如图所示,,,,点是以为直径的半圆上一动点,交直线于点,设.(1)当时,求弧BD的长;(2)当时,求线段的长;(3)若要使点在线段的延长线上,则的取值范围是_________.(直接写出答案)
如图,在平面直角坐标系中,的顶点坐标为A(-2,3)、B(-3,2)、C(-1,1)若将向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的;画出绕原点旋转后得到的顺次连结C,C1,C′,C2,所得到的图形是轴对称图形吗
先化简,再求值:,其中.
计算:+︱1-︱.
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.求抛物线的解析式若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF = 90°,且EF交正方形外角∠DCG的平行线CF于点F , 求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB的中点M,连结ME,则AM = EC,易证△AME≌△ECF,所以AE = EF . 在此基础上,同学们作了进一步的研究:小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE = EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE = EF ”仍然成立. 你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.