如图,已知☉O的直径AB=8,过A、B两点作☉O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.①求△COD的面积.②试判断直线CD与☉O的位置关系,并说明理由.(2)若直线CD与☉O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.
如图1,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始以1cm/s的速度沿AB边向点B运动,点Q从点B以2cm/s的速度沿BC边向点C运动,如果P、Q同时出发,设运动时间为ts,(1)当t=2时,求△PBQ的面积;(2)当t=时,试说明△DPQ是直角三角形;(3)当运动3s时,P点停止运动,Q点以原速立即向B点返回,在返回的过程中,DP是否能平分∠ADQ?若能,求出点Q运动的时间;若不能,请说明理由.
如图,直角三角形ABC到直角三角形DEF是一个相似变换,AC与DF的长度之比是3:2.(1)DE与AB的长度之比是多少?(2)已知直角三角形ABC的周长是12cm,面积是6cm2,求直角三角形DEF的周长与面积.
如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在BC、CD上,若△ADE∽△CMN,求CM的长.
如图,在等腰梯形ABCD中,∠B=60°,且AB=AD=CD,请你将等腰梯形分成3个三角形,使得其中有两个是相似三角形,且相似比不为1.现在请你参考示意图,另外再给出三种分割方法(注:在两个相似三角形中标明必要的角度.)
△ABC∽△A′B′C′,,AB边上的中线CD=4cm,△ABC的周长为20cm,△A′B′C′的面积是64cm2,求:(1)A′B′边上的中线C′D′的长;(2)△A′B′C′的周长;(3)△ABC的面积.