已知:⊙O是△ABC的外接圆,点M为⊙O上一点.(1)如图,若△ABC为等边三角形,BM=1,CM=2,求AM的长;小明在解决这个问题时采用的方法是:延长MC到E,使ME=AM,从而可证△AME为等边三角形,并且△ABM≌△ACE,进而就可求出线段AM的长.请你借鉴小明的方法写出AM的长,并写出推理过程.(2)若△ABC为等腰直角三角形,∠BAC=,,(其中),直接写出AM的长(用含有a,b的代数式表示).
(本小题6分)如图,点C,D在线段BF上,,,.求证:.
给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形. (1)在你学过的特殊四边形中,写出两种勾股四边形的名称; (2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°. ①求证:△BCE是等边三角形; ②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
抗震救灾重建家园,为了修建在地震中受损的一条公路,若由甲工程队单独修需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元. (1)请问甲、乙两工程队合作修建需几个月完成?共耗资多少万元? (2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算)
为了解某校七,八年级学生的睡眠情况,随机抽取了该校七,八年级部分学生进行调查,已知抽取七年级与八年级的学生人数相同,利用抽样所得的数据绘制如下统计图表. 睡眠情况分组表(单位:时)
根据图表提供的信息,回答下列问题: (1)求统计图中的a; (2)抽取的样本中,八年级学生睡眠时间在C组的有多少人? (3)已知该校七年级学生有755人,八年级学生有785人,如果睡眠时间x(时)满足:7.5≤x≤9.5,称睡眠时间合格,试估计该校七、八年级学生中睡眠时间合格的共有多少人?
如图,在△AOB中,∠ABO=90°,OB=4,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=4. (1)求反比例函数解析式; (2)求点C的坐标.