如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;0.com
(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.zx100.com
一架云梯长25 m,如图所示斜靠在一面墙上,梯子底端C离墙7 m.
(1)这个梯子的顶端A距地面有多高?
(2)如果梯子的顶端下滑了4 m,那么梯子的底部在水平方向也是滑动了几米?
一艘轮船由于风向原因先向正东方向航行了160km,然后向正北方向航行120km,这时它离出发点有多远?
如图,∠A=∠B,CE∥DA,CE交AB于E.求证:△CEB是等腰三角形.
如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.
求证:(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)若
,求⊙O的半径。
如图,某大楼的顶部树有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度
,AB=10米,AE=15米.
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
)
如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC
(2)若AB=4,AD=3
,AE=3,求AF的长.
已知:如图,∠ACB=∠ADB=90°,AC=AD,E是AB上任意一点。
(1)BC与BD相等吗?试说明理由。
(2)CE=DE吗?为什么?
已知,如图:△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外一点,连接AD、BD,过D作DH⊥AB,垂足为H,交AC于E.
(1)若△ABD是等边三角形,求DE的长;
(2)若BD=AB,且tan∠HDB=
,求DE的长.