如图,已知一张长方形纸片ABCD,AB∥CD ,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)请你动手操作,判断△MNK的形状一定是 ;
(2)问△MNK的面积能否小于?试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F.请解答下列问题:
(1)连结BD,试说明∠BDE=∠CDF;
(2)求证:BE=FC;
(2)若AE=4,FC=3,求EF长.
某航船以20海里/时的速度向正北方向航行,在A处看灯塔Q在航船北偏东45°处,半小时后航行到B处,此时灯塔Q与航船的距离最短.
(1)请你在图中画出点B的位置;
(2)求灯塔Q到A处的距离.(精确到0.1海里)
如图所示,要在公园(四边形ABCD)中建造一座音乐喷泉,喷泉位置应符合如下要求:
(1)到公园两个出入口A、C的距离相等;
(2)到公园两边围墙AB、AD的距离相等.
请你用尺规作图的方法确定喷泉的位置P.(不必写作法,但要保留作图痕迹)
如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,分别以三边为直径向上作三个半圆.
(1)AB= ;
(2)图中阴影部分面积= .
如图,一根木棒AB的长为2m斜靠在与地面垂直的墙上,与地面的倾斜角∠ABO为60°,当木棒沿墙壁向下滑动至A′,AA′=,B端沿地面向右滑动至点B′,则木棒中点从P随之运动至P′所经过的路径长为( )
A.1 | B. | C. | D. |
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.
(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.
如图,在△ABC中,AD⊥CA于点A,交BC于点D,M是CD的中点,连接AM,AM=AB.
(1)求证:CD=2AB;
(2)若AC=8,AB=5,求AD的长.
已知:如图,△AOC≌△BOD.求证:△AOD≌△BOC.
如图,在Rt△ABC中,∠C=90°,AB=10cm,D为AB的中点,则CD= cm.