如图,直线AB分别与两坐标轴交于点A(4,0).B(0,8),点C的坐标为(2,0).
(1)求直线AB的解析式;
(2)在线段AB上有一动点P.
①过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.
②连结CP,是否存在点P,使与相似,若存在,求出点P的坐标,若不存在,请说明理由.
如图,直线AB与坐标轴分别交于点A、点B,且OA、OB的长分别为方程x2-6x+8=0的两个根(OA<OB),点C在y轴上,且OA︰AC=2︰5,直线CD垂直于直线AB于点P,交x轴于点D.
(1)求出点A、点B的坐标.
(2)请求出直线CD的解析式.
(3)若点M为坐标平面内任意一点,在坐标平面内是否存在这样的点M,使以点B、P、D、M为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
在平面直角坐标系xOy中,直线分别与x轴,y轴交于过点A,B,点C是第一象限内的一点,且AB=AC,AB⊥AC,抛物线经过A,C两点,与轴的另一交点为D.
(1)求此抛物线的解析式;
(2)判断直线AB与CD的位置关系,并证明你的结论;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,B,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.
如图,直线AC是一次函数y=2x+3的图象,直线BC是一次函数y=﹣2x﹣1的图象.
(1)求A、B、C三点的坐标;
(2)求△ABC的面积.
如图,直线和x轴、y轴的交点分别为B、C,点A的坐标是(,0),另一条直线经过点A、C.
(1)求直线AC所对应的函数表达式;
(2)动点M从B出发沿BC运动,运动的速度为每秒1个单位长度.当点M运动到C点时停止运动.设M运动t秒时,△ABM的面积为S.
① 求S与t的函数关系式;
② 当t为何值时,(注:表示△ABC的面积),求出对应的t值;
③当 t=4的时候,在坐标轴上是否存在点P,使得△BMP是以BM为直角边的直角三角形?若存在,请直接写出P点坐标,若不存在,请说明理由。
(本小题满分9分)如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为.
(1)求双曲线的解析式;
(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.
(本小题满分12分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.
(1)如图1,当点C的横坐标为1时,求直线BC的解析式;
(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图2,设(m<0),过点的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.
如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为底边在y轴右侧作等腰三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
已知一次函数y=▓▓的图像过点A(0,3),B(2,4),C(m,0)题目中的阴影部分是一段因墨水污染而无法辨认的文字.
(1)根据已有的信息你能求出一次函数的表达式吗?若能,写出解题过程;不能,说明理由
(2)小明说“不用求表达式也能画出函数的图像”你认为对吗?为什么?
(3)根据表达式画出函数图像
(4)过点B能不能画一条直线将△ABO(O为坐标原点)分成面积比为1:2两部分?若能可以画几条?并写出此直线对应的函数表达式
我市高新技术开发区的某公司,用480万元购得某种产品的生产技术后,并进一步投入资金1520万元购买生产设备,进行该产品的生产加工,已知生产这种产品每件还需成本费40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元基础上每增加10元,年销售量将减少1万件.设销售单价为x(元),年销售量为y(万件),年获利为w(万元).(年获利=年销售额-生产成本-投资成本)(1)直接写出y与x之间的函数关系式;
(2)求第一年的年获利w与x间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?
(3)若该公司希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利不低于1842元,请你确定此时销售单价的范围.在此情况下,要使产品销售量最大,销售单价应定为多少元?
(本题12分)某中学为筹备校庆,准备印制一批纪念册,每册由4张彩页,6张黑白页构成.印
制该纪念册的总费用由制版费和印刷费两部分组成,其中制版费的价格为:彩页300元/张,黑白页50元/
张;印刷费用与印数的关系见下表:
印数x(千册) |
1≤x<5 |
x≥5 |
彩色(元/张) |
2.2 |
2.0 |
黑白(元/张) |
0.7 |
0.6 |
(1)印制这批纪念册需制版费 元,印制1千册纪念册的印刷费 元;
(2)若印制这批纪念册共需y元,则
①当1≤x<5时,求y关于x的函数表达式;
②当y≤60 080元,最多能印多少册?
如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.
(1)求直线y=kx+3的解析式;
(2)当点C运动到什么位置时△AOC的面积是6;
(3)过点C的另一直线CD与y轴相交于D点,是否存在点C使△BCD与△AOB全等?若存在,请求出点C的坐标;若不存在,请说明理由.
某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B出发, 沿轨道到达C处,在AC上,甲的速度是乙的速度的1.5倍,设t后甲、乙两遥控车与B处的距离分别为d1(米),d2(米),则d1,d2与t的函数关系如图,试根据图象解决下列问题:
(1)填空:乙的速度v2=_______________米/分;
(2)写出d1与t的函数关系式;
(3)若甲乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?
如图,已知平面直角坐标系中,直线y=kx(k≠0)经过点(a,a)(a>0).线段BC的两个端点分别在x轴与直线y=kx上(B、C均与原点O不重合)滑动,且BC=2,分别作BP⊥x轴,CP⊥直线y=kx,交点为P,经探究在整个滑动过程中,P、O两点间的距离为定值 .
如图,在平面直角坐标系中,直线AB与x轴、y轴的正半轴分别交于点A,B,直线CD与x轴正半轴、y轴负半轴分别交于点D,C,AB与CD相交于点E,点A,B,C,D的坐标分别为(8,0)、(0,6)、(0,﹣3)、(4,0),点M是OB的中点,点P在直线AB上,过点P作PQ∥y轴,交直线CD于点Q,设点P的横坐标为m.
(1)求直线AB,CD对应的函数关系式;
(2)用含m的代数式表示PQ的长;
(3)若以点M,O,P,Q为顶点的四边形是矩形,请直接写出相应的m的值.