某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升, 则水库的水位与上涨时间之间的函数关系式是 .
已知一次函数的图像经过点A(0,2)和点B(2,-2):(1)求出y关于x的函数表达式为 ;(2)当-2<y<4时,x的取值范围是 .
在平面直角坐标系中,一次函数的图像与函数(>0)的图像相交于点A,B,设点A的坐标为(,),那么长为,宽为的矩形的面积为 ,周长为
如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为底边在y轴右侧作等腰三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为 .
已知直线与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点,把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是_________________.
如图,第一象限内的点在反比例函数的图象上,第二象限内的点在反比例函数的图象上,且,,则的值为 .
如图,直线与,轴分别交于,两点,以为边在轴右侧作等边,将点向左平移,使其对应点恰好落在直线上,则点的坐标为 .
一次函数y=kx+b与y=-x+1平行,且经过点(6,4),则表达式为: .
如果直线y=-2x+b与两坐标轴所围成的三角形面积是9,则b的值为_____.
一次函数经过点(–1 , 2)且y随x增大而减小,写出一个满足条件的函数关系式_____.
、乙两名自行车爱好者准备在一段长为3400m的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面,他们同时出发,匀速前进,已知甲的速度为15m/s,设甲、乙两人之间的距离为y(米),比赛时间为x(秒),图中的折线表示从两人出发至乙先到达终点的过程中y (米)与x(秒)的函数关系,根据图中信息,乙到终点时, 甲离终点还有 米.
在平面直角坐标系中,记直线为.点是直线与轴的交点,以为边做正方形,使点落在在轴正半轴上,作射线交直线于点,以 为边作正方形,使点落在在轴正半轴上,依次作下去,得到如图所示的图形.则点的坐标是 ,点的坐标是 .