初中数学

如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.

(1)填空:甲、丙两地距离        千米.
(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.

(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题8分)在平面直角坐标系中,直线y=kx﹣2经过点A(﹣2,0),求不等式kx+3≤0的解集.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【实际情境】
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.
【数学研究】
若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象.

(1)求线段AB对应的函数关系式;
(2)求点E的坐标,并说明它的实际意义;
(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:

设每月上网学习时间为x小时,方案A,B的收费金额分别为
(1)如图是与x之间函数关系的图象,请根据图象填空:m=       ;n=       

(2)写出与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图1,在△ABC中,A、B、C的坐标分别为(1,0),(4,0),(0,2),点M为边BC上的中点,点N为边AB 上一点,且N的横坐标为方程2n+5n-12=0一个根,
(1)求N的坐标和直线MN的解析式 ;(3+3)
(2)判断直线MN与BC的位置关系,并说明你的理由;(1+3)
(3)如图2,①在图2中作出△ABC的外接圆;②过Q(,0)作直线⊥x轴,点P在直线上,且在第一象限,试确定一个点P,使得∠CPB+∠CAB=180°,求出满足条件的P点坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出300件;若按每件6元的价格销售,每月能卖出200件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数y=2x+b的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C(-2,0),点A的坐标为(n,6).

(1)求该反比例函数的解析式;
(2)求点B的坐标,写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若点E为x轴上使△ACE为直角三角形的一点,求点E的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费 y (元)与用水量 x m3之间的函数关系.其中线段AB表示第二级阶梯时 y x 之间的函数关系.

(1)写出点 B 的实际意义;
(2)求线段 A B 所在直线的表达式;
(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:

家电名称
空调
彩电
冰箱
工 时


1
2



1
3



1
4

产值(千元)
4
3
2

 
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是     
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一次函数y=x+6与反比例函数的图象相交于A,B两点,与x轴、y轴交于E、F,点B的横坐标为

(1)试确定反比例函数的解析式;
(2)求点E、F的坐标。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在奉贤创建文明城区的活动中,有两段长度相等的彩色道砖铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设彩色道砖的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:

(1)求乙队在2≤x≤6的时段内,y与x之间的函数关系式;
(2)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度为多少米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题