初中数学

(本题7分)如图,分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。

(1)B出发时与A相距              千米。
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是        小时。
(3)B出发后          小时与A相遇。
(4)若B的自行车不发生故障,保持出发时的速度前进,        小时与A相遇?相遇点离B的出发点        千米?在图中表示出这个相遇点C。
(5)A行走的路程S与时间t的函数关系式为                     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题6分)一次函数的图象经过点A(−3,−2).
(1)求这个一次函数的关系式;  
(2)判断点B(-5,3)是否在这个函数的图象上.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数的图象经过点(3,6)与点(),求这个函数的解析式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一根80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。(10 分)
(1)填写下表

所挂物体的质量(千克)
1
2
3
4

弹簧的总长度(厘米)
 
 
 
 

 
(2)写出弹簧总长度y(厘米)与所挂物体的质量x(千克)之间的数量关系。
(3)若在这根弹簧上挂上某一物体后,弹簧总长为96 厘米,求所挂物体的质量?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正比例函数y=2x与反比例函数的图象的一个交点为A(2,m).
求m和k的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知一次函数的图象过点(3,5)与(﹣4,﹣9),且该图象与x轴、y轴分别交于点A、点B,点O为坐标原点,
(1)求这个一次函数的解析式;
(2)求△OAB的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数y=2x+b的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C(-2,0),点A的坐标为(n,6).

(1)求该反比例函数的解析式;
(2)求点B的坐标,写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若点E为x轴上使△ACE为直角三角形的一点,求点E的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:

家电名称
空调
彩电
冰箱
工 时


1
2



1
3



1
4

产值(千元)
4
3
2

 
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费 y (元)与用水量 x m3之间的函数关系.其中线段AB表示第二级阶梯时 y x 之间的函数关系.

(1)写出点 B 的实际意义;
(2)求线段 A B 所在直线的表达式;
(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.

(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.

(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式?
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【实际情境】
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.
【数学研究】
若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象.

(1)求线段AB对应的函数关系式;
(2)求点E的坐标,并说明它的实际意义;
(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.

(1)图中线段AB所表示的实际意义是     
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题