为推进节能减排,发展低碳经济,江阴某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为:(年获利=年销售收入—生产成本—投资成本)
(1)当销售单价定为28元时,该产品的年销售量为多少万件?
(2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?
(3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.
已知函数与函数交于点A(2,b)B(-3,m)两点(点A在第一象限),
|
(本小题满分7分)甲、乙两人沿同一路线登山,图中线段、折线分别是甲、乙两人登山的路程(米)与登山时间之间的函数图象.请根据图象所提供的信息,解答如下问题:
(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量的取值范围;
(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?
如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.
(1)填空:甲、丙两地距离 千米.
(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.
如图,在方格纸中(小正方形的边长为1),反比例函数与直线的交点A、B均在格点上,根据所给的直角坐标系(O是坐标原点),解答下列问题:
(1)①分别写出点A、B的坐标;
②把直线AB向右平移5个单位,再向上平移5个单位,求出平移后直线A′B′的解析式;
(2)若点C在函数的图象上,△ABC是以AB为底的等腰三角形,请写出点C的坐标.
如图,在平面直角坐标系中,一次函数y=2x+b的图象与反比例函数y=(k≠0)的图象交于A、B两点,与x轴交于点C(-2,0),点A的坐标为(n,6).
(1)求该反比例函数的解析式;
(2)求点B的坐标,写出正比例函数值大于反比例函数值时自变量x的取值范围;
(3)若点E为x轴上使△ACE为直角三角形的一点,求点E的坐标.
【实际情境】
某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.
【数学研究】
若不计队伍的长度,如图,折线A-B-C、A-D-E分别表示后队、联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间的部分函数图象.
(1)求线段AB对应的函数关系式;
(2)求点E的坐标,并说明它的实际意义;
(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?
随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:
设每月上网学习时间为x小时,方案A,B的收费金额分别为,.
(1)如图是与x之间函数关系的图象,请根据图象填空:m= ;n= ;
(2)写出与x之间的函数关系式.
(3)选择哪种方式上网学习合算,为什么?
某商场欲购进果汁饮料和碳酸饮料共50箱,果汁饮料毎箱进价为55元,售价为63元;碳酸饮料毎箱进价为36元,售价为42元;设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注,总利润=总售价﹣总进价),
(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;
(2)求总利润w关于x的函数关系式;
(3)如果购进两种饮料的总费用不超过2000元,那么该商场如何进货才能获利最多?并求出最大利润.
某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出300件;若按每件6元的价格销售,每月能卖出200件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.
(1)试求y与x之间的函数关系式;
(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?
为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;
(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.
某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:
家电名称 |
空调 |
彩电 |
冰箱 |
||||||
工 时 |
|
|
|
||||||
产值(千元) |
4 |
3 |
2 |
问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少?(以千元为单位)
一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.
开学初,小明到文具批发部一次性购买某种笔记本,该文具批发部规定:这种笔记本售价y(元/本)与购买数量x(本)之间的函数关系如图所示.
(1)图中线段AB所表示的实际意义是 ;
(2)请直接写出y与x之间的函数关系式;
(3)已知该文具批发部这种笔记本的进价是3元/本,若小明购买此种笔记本超过10本但不超过20本,那么小明购买多少本时,该文具批发部在这次买卖中所获的利润W(元)最大?最大利润是多少?
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系式?
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?