2015年初中毕业升学考试(广西玉林市防城港卷)数学
如图是由七个棱长为1的正方体组成的一个几何体,其俯视图的面积是( )
A.3 | B.4 | C.5 | D.6 |
如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是( )
A.AD=AE | B.DB=EC | C.∠ADE=∠C | D.DE=BC |
学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是( )
A.2 | B.2.8 | C.3 | D.3.3 |
如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是( )
A.AC=AB | B.∠C=∠BOD | C.∠C=∠B | D.∠A=∠BOD |
如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于( )
A.1 | B.2 | C.3 | D.4 |
某次列车平均提速vkm/h,用相同的时间,列车提速前行驶skm,提速后比提速前多行驶50km.设提速前列车的平均速度为xkm/h,则列方程是( )
A. | B. |
C. | D. |
如图,ABCD是矩形纸片,翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,折痕分别是CE,AF,则等于( )
A. | B.2 | C.1.5 | D. |
如图,反比例函数的图象经过二次函数图象的顶点(,m)(m>0),则有( )
A. | B. | C. | D. |
某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇形统计图,其中“其他”部分所对应的圆心角是36°,则“步行”部分所占百分比是 .
如图,等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:,将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC= .
如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是 .
现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.
(1)求两次抽得相同花色的概率;
(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)
如图,在
中,
是直径,点
是
上一点且
,过点
作
的切线
交
的延长线于点
,
为
的中点,连接
,
.
(1)求证:四边形
是平行四边形;
(2)已知图中阴影部分面积为
,求
的半径
.
某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.
(1)求y关于x的函数关系式(不要求写出x的取值范围);
(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?
如图,在矩形ABCD中,AB=5,AD=3,点P是AB边上一点(不与A,B重合),连接CP,过点P作PQ⊥CP交AD边于点Q,连接CQ.
(1)当△CDQ≌△CPQ时,求AQ的长;
(2)取CQ的中点M,连接MD,MP,若MD⊥MP,求AQ的长.