现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)
现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所献血的血型均为O型的概率(要求:用列表或画树状图的方法解答).
如图1,正方形ABCD是一个6×6网格的示意图,其中每个小正方形的边长为1,位于AD中点处的点P按图2的程序移动. (1)请在图中画出点P经过的路径; (2)求点P经过的路径总长.
如图,已知二次函数的图象与x轴交于A、B两点(B在A的左侧),顶点为C, 点D(1,m)在此二次函数图象的对称轴上,过点D作y轴的垂线,交对称轴右侧的抛物线于E点. (1)求此二次函数的解析式和点C的坐标; (2)当点D的坐标为(1,1)时,连接BD、.求证:平分; (3)点G在抛物线的对称轴上且位于第一象限,若以A、C、G为顶点的三角形与以G、D、E为顶点的三角形相似,求点E的横坐标.
已知四边形ABCD和四边形CEFG都是正方形 ,且AB>CE. (1)如图1,连接BG、DE.求证:BG=DE; (2)如图2,如果正方形ABCD的边长为,将正方形CEFG绕着点C旋转到某一位置时恰好使得CG//BD,BG=BD. ①求的度数; ②请直接写出正方形CEFG的边长的值.
已知抛物线(). (1)求抛物线与轴的交点坐标; (2)若抛物线与轴的两个交点之间的距离为2,求的值; (3)若一次函数的图象与抛物线始终只有一个公共点,求一次函数的解析式.