初中数学

现有甲、乙两个容器,分别装有进水管和出水管,两容器的进出水速度不变,先打开乙容器的进水管,2分钟时再打开甲容器的进水管,又过2分钟关闭甲容器的进水管,再过4分钟同时打开甲容器的进、出水管.直到12分钟时,同时关闭两容器的进出水管,打开和关闭水管的时间忽略不计。容器中的水量y(升)与乙容器注水时间x之间的关系如图所示:

(1)求甲容器的进、出水速度.
(2)甲容器进、出水管都关闭后,是否存在两容器的水量相等。若存在,求出此时的时间.
(3)若使两容器第12分钟时水量相等,则乙容器6分钟后进水速度应变为多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知在平面直角坐标系xoy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.

(1)求k和b的值;
(2)求△OAB的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,请回答下列问题:

(1)A、C两村间的距离为   km;
(2)求a的值和点P的坐标,并解释该点坐标所表示的实际意义;
(3)乙在行驶过程中,何时距甲10km?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两商场各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.
(1)根据题意,填写下表(单位:元):

(2)当x取何值时,小红在甲、乙两商场的实际花费金额相同?
(3)请你根据小红累计购物的金额选择花费较少的商场?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

喝绿茶前需要烧水和泡茶两个工序,即需要将电热壶中的水烧到100℃,然后停止烧水,等水温降低到适合的温度时再泡茶,烧水时水温 (℃)与时间菇(min)成一次函数关系;停止加热1分钟后(1分钟内水温不变),水壶中水的温度y(℃)与时间 (min)近似于反比例函数关系(如图).已知水壶中水的初始温度是20℃,降温过程中水温不低于20℃.

(1)求出图中AB所在直线对应的函数关系式,并且写出自变量的取值范围;
(2)从水壶中的水烧开(100℃)降到80℃就可以进行泡制绿茶,问从水烧开到泡茶需要等待多长时间?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,一次函数的图象与x轴、y轴相交于点A(,0),B(0,)两点,二次函数的图象经过点A.

(1)求一次函数的表达式;
(2)若二次函数的图象的顶点在直线AB上,求m,n;
(3)①设时,当时,求二次函数的最小值;
②反之若时,二次函数的最小值为,求m,n的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车分别从A、B两地同时出发相向而行,并以各自的速度匀速行驶,甲车与乙车相遇后休息半小时,再按原速度继续前进到达B地;乙车从B地直接到达A地;两车到达各自目的地后即停止.如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.

(1)甲车的速度是       ,m=     
(2)请分别写出两车在相遇前到B地的距离y(千米)与甲车出发时间x(小时)的函数关系式;
(3)当乙车行驶多少时间时,甲乙两车的距离是280千米.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

2015“两相和”杯群星演唱会在我市体育馆进行,市文化局、广电局
在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费
用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用
=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.

解答下列问题:
(1)方案一中,y与x的函数关系式为              
方案二中,当0≤x≤100时,y与x的函数关系式为           
当x>100时,y与x的函数关系式为             
(2)甲、乙两单位分别采用方案一、方案二购买本场演唱会门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某工厂在生产过程中每消耗1万度电可以产生产值5.5万元.电力公司规定,该工厂每月用电量不得超过16万度;月用电量不超过4万度时,单价都是1万元/万度;超过4万度时,超过部分电量单价将按用电量进行调整,电价y与月用电量x的函数关系可以用如图来表示.(效益=产值-用电量×电价);

(1)设工厂的月效益为z(万元),写出z与月用电量x(万度)之间的函数关系式,并写出自变量的取值范围;
(2)求工厂最大月效益.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:

(1)小张如何进货,使进货款恰好为1300元?
(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:
服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件。
(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?
(2)在(1)的条件下,该服装店对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.

(1)根据图象,求y与x的函数关系式;
(2)商店想在销售成本不超过3000元的情况下,使销售利润达到2400元,销售单价应定为多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.

(1)求出图中m,a的值;
(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;
(3)当乙车行驶多长时间时,两车恰好相距50km.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

广安某水果点计划购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:

 
进价(元/千克)
售价(元/千克)
甲种
5
8
 
9
13

(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?
(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果点在销售完这批水果时获利最多?此时利润为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题10分)已知一次函数的图像经过点,且与正比例函数的图像相交于点
(1)求的值;
(2)求一次函数的解析式;
(3)求这两个函数图像与轴所围成的三角形面积.(画图解答)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题