如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象.
(1)填空:甲、丙两地距离 千米.
(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.
为了能有效地使用电力资源,跃进花园小区实行居民峰谷用电,居民家庭在峰时段(上午8:00—晚上21:00)用电的电价为0.55元/度,谷时段(晚上21:00—次日晨8:00)用电的电价为0.35元/度.
(1)若朱老师家某月用电100度,其中峰时段用电度,这个月应缴纳电费 度;当朱老师家峰时段用电60度时,求应缴纳电费.
(2)朱老师生活节俭,每天早晨5:30起身后立即用额定功率1500瓦的电水壶烧水,10分钟能烧开一壶水。问朱老师家一年内用电水壶烧水共耗电多少度?能节省电费多少元?(一年按实际烧水360天计算,1度=1千瓦.时)
在直角坐标系中,等腰直角三角形A1B1O、A2B2B1、A3B3B2、…、AnBnBn-1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数的图像上,点B1、B2、B3、…、Bn均在x轴上。若点B1的坐标为(1,0),点B2的坐标为(3,0),则点An的坐标为( )
A.(,) | B.(,) |
C.(,+1) | D.(,) |
学校需要到印刷厂印刷x份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.
(1)两印刷厂的收费各是多少元?(用含x的代数式表示)
(2)学校要印刷2400份材料,若不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.
某空调器销售商,今年四月份销出空调(a﹣1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台.
(1)用代数式表示该销售商今年第二季度共销售空调多少台?
(2)若a=220,求第二季度销售的空调总数.
如图,在△ABC中,∠BAC=90°,AB=AC=6,D为BC的中点.
(1)若E、F分别是AB、AC上的点,且AE=CF,求证:△AED≌△CFD;
(2)当点F、E分别从C、A两点同时出发,以每秒1个单位长度的速度沿CA、AB运动,到点A、B时停止;设△DEF的面积为y,F点运动的时间为x,求y与x的函数关系式;
(3)在(2)的条件下,点F、E分别沿CA、AB的延长线继续运动,求此时y与x的函数关系式.
如图1,已知:抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,经过B,C两点的直线是y=x-2,连结AC.
(1)求出抛物线的函数关系式;
(2)若△ABC内部能否截出面积最大的矩形DEFC(顶点D、E、F、G在△ABC各边上)?若能,求出在AB边上的矩形顶点的坐标;若不能,请说明理由.
(3)点P(t,0)是x轴上一动点,P、Q两点关于直线BC成轴对称,PQ交BC于点M,作QH⊥x轴于点H.连结OQ,是否存在t的值,使△OQH与△APM相似?若存在,求出t的值;若不存在,说明理由.
某零件制造车间有工人20名,已知每名工人每天可制造甲种零件6个或乙种零件5个,且每制造一个甲种零件,可获利润150元,每制造一个乙种零件可获利润260元,在这20名工人中,车间每天安排x名工人制造甲种零件,其余工人制造乙种零件,且生产乙种零件的个数不超过甲种零件个数的一半.
(1)请写出此车间每天所获利润y(元)与x(人)之间的函数关系式;
(2)求自变量x的取值范围;
(3)怎样安排生产,每天获得的利润最大,最大利润是多少?
如图,在平面直角坐标系中,直线y=﹣x+交直线y=kx(k>0)于点B,平行于y轴的直线x=7交它们于点A、C,且AC=15.
(1)求∠OBC的度数;
(2)若正方形的四个顶点恰好在射线AB、射线CB及线段AC上,请直接写出射线AB上的正方形顶点的坐标.(不需要写出计算过程).
A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D村的运费分别是300元和500元.
(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;
(2)若要求总运费不超过9000元,共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
分析由已知条件填出下表:
库存机器 |
支援C村 |
支援D村 |
B市6台 |
x台 |
(6﹣x)台 |
A市12台 |
(10﹣x)台 |
[8﹣(6﹣x)]台 |
如图,直线y=﹣x+1交y轴于A点,交x轴于C点,以A,O,C为顶点作矩形AOCB,将矩形AOCB绕O点逆时针旋转90°,得到矩形DOFE,直线AC交直线DF于G点.
(1)求直线DF的解析式;
(2)求证:OG平分∠CGD;
(3)在第一象限内,是否存在点H,使以G,O,H为顶点的三角形为等腰直角三角形?若存在请求出点H的坐标;若不存在,请什么理由.
为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.
(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;
(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?
一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0:③b>0;④x<2时,kx+b<x+a中,正确的个数是( )
A.1 | B.2 | C.3 | D.4 |
【问题情境】
张老师给爱好学习的小林和小兰提出这样一个问题:如图①,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.
小林的证明思路是:如图②,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小兰的证明思路是:如图②,过点P作PG⊥CF,垂足为G,通过证明四边形PDFG是矩形,
可得:PD=GF,PE=CG,则PD+PE=CF.
【变式探究】如图③,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
【结论运用】请运用上述解答中所积累的经验和方法完成下列两题:
如图④,在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用上述的结论求出点M的坐标.
某公司生产的一种时令商品每件成本为20元,经过市场调研发现,这种商品在未来20天内的日销售量m(件)与时间t(天)的关系如表:
时间t(天) |
1 |
3 |
6 |
10 |
… |
日销售量m(件) |
94 |
90 |
84 |
76 |
… |
未来20天内每天的价格y(元/件)与时间t(天)的函数关系式为y=t+25(1≤t≤20且t为整数).
(1)认真分析表中的数据,用所学过的函数知识,确定一个满足这些数据的m(件)与t(天)之间的关系式;
(2)设未来20天日销售利润为p(元).请求出p(元)与t(天)之间的关系式;并预测未来20天中哪一天的日销售利润最大,最大日销售利润是多少?