初中数学

已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图,点P是第一象限内抛物线上的一个动点,若点P使四边形ABPC的面积最大,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

(1)求B点坐标;
(2)求证:ME是⊙P的切线;
(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;
②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.

(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知抛物线yn=-(x-an)2+an(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(,0)和An(bn,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.

(1) 求a1、b1的值及抛物线y2的解析式;
(2) 抛物线y3的顶点坐标为(____,___);依此类推第n条抛物线yn的顶点坐标为(_____,_____)(用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式是_____________;
(3) 探究下列结论:
①若用An-1 An表示第n条抛物线被x轴截得的线段的长,则A0A1=______An-1 An=____________
②是否存在经过点A1(b1,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,点是半圆的半径上的动点,作.点是半圆上位于左侧的点,连结交线段,且

(1) 求证:是⊙O的切线.
(2) 若⊙O的半径为,,设
①求关于的函数关系式.
②当时,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

抛物线的图像于x轴交于点M,N,且经过点A(0,1),其中,过点A的直线交x轴于C点,与抛物线交于点B(异于A点),满足△CAN是等腰直角三角形,切,求解析式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题10分)问题情境


已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的一边长为x,周长为y,则y与x的函数关系式为                       
探索研究
⑴我们可以借鉴以前研究函数的经验,先探索函数的图象性质.
①填写下表,画出函数的图象:

x
……



1
2
3
4
……
y
……
 
 
 
 
 
 
 
……

 



2

 

②观察图象,试描述该函数的增减性(y随x变化发生什么变化);

③在求二次函数y=ax+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过
配方得到.请你通过配方求函数(x>0)的最小值.
解决问题
⑵用上述方法解决“问题情境”中的问题,直接写出答案.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线经过点,且与轴交于点、点,若

(1)求此抛物线的解析式;
(2)若抛物线的顶点为,点是线段上一动点(不与点重合),,射线与线段交于点,当△为等腰三角形时,求点的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G,且∠AGO=30°。
(1)点C、D的坐标分别是C(       ),D(       );
(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;
(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E。平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(满分l4分)已知:抛物线y=x2-(a+2)x+9的顶点在坐标轴上.
(1)求a的值;
(2)若该抛物线的顶点C在x轴的正半轴上,而此抛物线与直线Y=x+9交于A,B两点,且A点在B点左侧,P为线段AB上的点(A,B两端点除外).过点P作x轴的垂线与抛物线交于点Q(可在图中画示意图).问:

①线段AB上是否存在这样的点P,使得PQ的长等于6?若存在,请求出点P的坐标;若不存在,请说明理由.
②线段AB上是否存在这样的点P,使得△ABQ∽△OAC?若存在,请求出此时点Q的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:二次函数y=ax2+bx+6(a≠0)与x轴交于A,B两点(点A在点B的左侧),点A、点B的横坐标是一元二次方程x2-4x-12=0的两个根.

(1)请直接写出点A、B的坐标,并求出该二次函数的解析式.
(2)如图1,在二次函数对称轴上是否存在点P,使△APC的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
(3)如图2,连接AC、BC,点Q是线段OB上一个动点(点Q不与点O、B重合).过点Q作QD∥AC交BC于点D,设Q点坐标(m,0),当△CDQ面积S最大时,求m的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图甲,Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm和2cm,C点和M点重合,BC和MN在一条直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线向右以每秒1cm的速度移动(如图乙),直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重叠部分的面积为ycm2.求y与x之间的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在中,,将绕点按逆时针方向旋转至点的坐标为.(1)求点的坐标;
(2)求过三点的抛物线的解析式;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题