初中数学

如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,把边长分别是为4和2的两个正方形纸片OABC和OD′E′F′叠放在一起.
(1)操作1:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转45°得到正方形ODEF,如图2,连接AD、CF,线段AD与CF之间有怎样的数量关系?试证明你的结论;
(2)操作2,如图2,将正方形ODEF沿着射线DB以每秒1个单位的速度平移,平移后的正方形ODEF设为正方形PQMN,如图3,设正方形PQMN移动的时间为x秒,正方形PQMN与正方形OABC的重叠部分面积为y,直接写出y与x之间的函数解析式;
(3)操作3:固定正方形OABC,将正方形OD′E′F′绕点O按顺时针方向旋转90°得到正方形OHKL,如图4,求△ACK的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,二次函数y=ax2+2ax+b的图象与x轴交于点A、B,与y轴交于点C(0,),其顶点在直线y=-2x上.
(1)求a,b的值;
(2)写出当-2≤x≤2时,二次函数y的取值范围;
(3)以AC、CB为一组邻边作□ACBD,则点D关于x轴的对称点D’是否在该二次函数的图象上?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线与x轴交于两点,直线与y 轴交于点,与轴交于点,点轴上方的抛物线上一动点,过点轴于点,交直线于点.设点的横坐标为

(1)求抛物线的解析式;
(2)若,求的值;
(3)若点是点关于直线的对称点、是否存在点,使点落在y轴上?若存在,求出相应的点的坐标;若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图, 在直角坐标系xOy中,一次函数y=-x+m(m为常数)的图像与x轴交于A(-3,0),与y轴交于点C。以直线x=-1为对称轴的抛物线y=a+bx+c(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.

(1)求一次函数及抛物线的函数表达式。
(2)已知在对称轴上是否存在一点P,使得PBC的周长最小,若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE。设CD的长为m, △PDE的面积为S。求S与m之间的函数关系式。并说明S是否存在最大值,若存在,请求出最大值:若不存在,请说明理由。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系xOy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0.

(1)求抛物线的解析式.
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围.
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分9分)某电子厂商投产一种新型电子厂品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价﹣制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分5分)已知反比例函数y=的图象与二次函数yax2x-1的图象相交于点A(2,2)

(1)求反比例函数与二次函数的解析式;
(2)设二次函数图象的顶点为B,判断点B是否在反比例函数的图象上,并说明理由;



 

 

(3)若反比例函数图象上有一点P,点P的横坐标为1,求△AOP的面积.



来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知直线与茹轴分别相交于B,A两点,抛物线过A,B两点,且对称轴为直线

(1)求A,B两点的坐标,并求抛物线的解析式;
(2)若点P以1个单位/秒的速度从点B沿轴向点O运动.过点P作轴的平行线交直线AB于点M,交抛物线于点N.设点P运动的时间为,MN的长度为S,求S与之间的函数关系式,并求出当为何值时,S取得最大值?
(3)设抛物线的对称轴CD与直线AB相交于点D,顶点为C.问:在(2)条件不变情况下,是否存在一个值,使四边形CDMN是平行四边形?若存在,求出的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=3,AD=4,P是BC上的任意一点(P与B、C不重合),过点P作AP⊥PE,垂足为P,PE交CD于点E.

(1)连接AE,当△APE与≌△ADE时,求BP的长;
(2)设BP=x,CE=y,确定y与x的函数关系式;
(3) 当x取何值时,AE的长最短,求x的值和AE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组成一条封闭曲线,我们把这条封闭曲线称为“蛋线”,已知点C的坐标为(0,-),点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;
(2)“蛋线”在第四象限内是否存在一点P,使得∆PBC的面积最大?若存在,求出∆PBC面积的最大值;若不存在,请说明理由;
(3)当∆BDM为直角三角形时,请直接写出m的值.(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点间的距离为MN=.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,对于平面上小于等于90°的∠MON,我们给出如下定义:若点P在∠MON的内部或边上,作PE⊥OM于点E,PF⊥ON于点F,则将PE+PF称为点P与∠MON的“点角距”,记作d(∠MON,P).如图2,在平面直角坐标系xOy中,x、y正半轴所组成的角为∠xOy.

(1)已知点A(5,0)、点B(3,2),则d(∠xOy,A)=       ,d(∠xOy,B)=         
(2)若点P为∠xOy内部或边上的动点,且满足d(∠xOy,P)=5,画出点P运动所形成的图形.
(3)如图3与图4,在平面直角坐标系xOy中,射线OT的函数关系式为y=x(x≥0).
①在图3中,点C的坐标为(4,1),试求d(∠xOT,C)的值;
②在图4中,抛物线y=-x2+2x+经过A(5,0)与点D(3,4)两点,点Q是A,D两点之间的抛物线上的动点(点Q可与A,D两点重合),求当d(∠xOT,Q)取最大值时点Q 的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图(1),直线与x轴交于点A、与y轴交于点D,以AD为腰,以x轴为底作等腰梯形ABCD(AB>CD),且等腰梯形的面积是8,抛物线经过等腰梯形的四个顶点.

图(1)
(1) 求抛物线的解析式;
(2) 如图(2)若点P为BC上的—个动点(与B、C不重合),以P为圆心,BP长为半径作圆,与轴的另一个交点为E,作EF⊥AD,垂足为F,请判断EF与⊙P的位置关系,并给以证明;

图(2)
(3) 在(2)的条件下,是否存在点P,使⊙P与y轴相切,如果存在,请求出点P的坐标;如果不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图①,梯形ABCD中,AD∥BC,∠C=90°,BA=BC.动点E、F同时从点B出发,点E沿折线 BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s.设E出发t s时,△EBF的面积为y cm2.已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段.

请根据图中的信息,解答下列问题:
(1)AD=        cm,BC=       cm;
(2)求a的值,并用文字说明点N所表示的实际意义;
(3)直接写出当自变量t为何值时,函数y的值等于5.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

【课本节选】
反比例函数y=(k为常数,k≠0)的图象是双曲线.当k>0时,双曲线两个分支分别在三象限,在每一个象限内,y随x的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).这些我们熟悉的性质,可以通过说理得到吗?
【尝试说理】
我们首先对反比例函数y=(k>0)的增减性来进行说理.如图,当x>0时.

在函数图象上任意取两点A、B,设A(x1,),B(x2,),
且0<x1<x2
下面只需要比较和的大小.
—=.
∵0<x1<x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即<
这说明:x1<x2时,>.也就是:自变量值增大了,对应的函数值反而变小了.
即:当x>0时,y随x的增大而减小.
同理,当x<0时,y随x的增大而减小.
(1)试说明:反比例函数y= (k>0)的图象关于原点对称.
【运用推广】
(2)分别写出二次函数y=ax2(a>0,a为常数)的对称性和增减性,并进行说理.
对称性:                                           
增减性:                                           
说理:

(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=—时函数取得最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题