如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为,点P的横坐标为,求关于的函数关系式,并求出的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在轴上时,求出对应点P的坐标.
如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B.
(1)①直接写出点B的坐标;②求抛物线解析式.
(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标;
(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.
如图,直线与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x轴交于另一点A,线段BC与抛物线的对称轴l相交于点D,设抛物线的顶点为P,连接AD,线段AD与y轴相交于点E.
(1)求该抛物线的解析式及对称轴;
(2)连结AP,请在y轴正半轴上找一点Q,使Q、C、D为顶点的三角形与△ADP全等,并求出点Q的坐标.将∠CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴l相交于点N,若2DM=DN,求点M的坐标.
如图,直线y=kx+c与抛物线y=ax2+bx+c的图象都经过y轴上的D点,抛物线与x轴交于A、B两点,其对称轴为直线x=1,且OA=OD.直线y=kx+c与x轴交于点C(点C在点B的右侧).则下列命题中正确命题的个数是( )
①abc>0;②3a+b>0;③﹣1<k<0;④k>a+b;⑤ac+k>0.
A.1 B.2 C.3 D.4
已知抛物线与轴交于点,且.
(1)求抛物线的解析式.
(2)抛物线的对称轴为,与y轴的交点为C,顶点为D,点C关于的对称点为E.是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形
时,求点P的坐标。
如图,在相距2米的两棵树间拴一根绳子做一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小芳距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
如图,已知二次函数L1:y=ax2-2ax+a+3(a>0)和二次函数L2:y=-a(x+1)2+1(a>0)图象的顶点分别为M,N , 与轴分别交于点E, F.
(1) 函数的最小值为 ;
当二次函数L1 ,L2的值同时随着的增大而减小时,的取值范围是 ;
(2)当时,求的值,并判断四边形的形状(直接写出,不必证明);
(3)若二次函数L2的图象与轴的右交点为,当△为等腰三角形时,求方程的解.
如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=3时,这两个二次函数的最大值之和等于( )
A. B. C.3 D.4
如图,抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,且交y轴于点C,对称轴与抛物线相交于点P、与直线BC相交于点M.
(1)求该抛物线的解析式.
(2)在抛物线上是否存在一点N,使得|MN﹣ON|的值最大?若存在,请求出点N的坐标;若不存在,请说明理由.
(3)连接PB,请探究:在抛物线上是否存在一点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图1:矩形OABC的顶点A、B在抛物线上,OC在轴上,且.
(1)求抛物线的解析式及抛物线的对称轴.
(2)如图2,边长为的正方形ABCD的边CD在轴上,A、B两点在抛物线上,请用含的代数式表示点B的坐标,并求出正方形边长的值.
定义一种变换:平移抛物线F1得到抛物线F2,使F2经过F1的顶点A.设F2的对称轴分别交F1,F2于点D,B,点C是点A关于直线BD的对称点.
(1)如图1,若F1:y=x2,经过变换后,得到F2:y=x2+bx,点C的坐标为(2,0),则:
①b的值等于 ;
②四边形ABCD为( )
A、平行四边形;B、矩形;C、菱形;D、正方形.
(2)如图2,若F1:y=ax2+c,经过变换后,点B的坐标为(2,c﹣1),求△ABD的面积;
(3)如图3,若F1:y=x2﹣x+,经过变换后,AC=2,点P是直线AC上的动点,求点P到点D的距离和到直线AD的距离之和的最小值.
已知抛物线y=ax2+2x+c与x轴交于A(1,0)和点B,与y轴交于点C(0,﹣3).
(1)求抛物线的解析式.
(2)如图1,已知点H的坐标为(0,1),设点M为y轴左侧抛物线上的一个动点,试猜想:是否存在这样的点M,使|MA﹣MH|的值最大,如果存在,请求出点M的坐标;如果不存在,请说明理由.
(3)如图2,过x轴上点E(﹣2,0)作ED⊥AB交抛物线于点D,在y轴上找一点F,使△EDF的周长最小,求出此时点F的坐标;
(4)如图3,已知点N(0,﹣1).问在抛物线上是否存在点Q(点Q在y轴的左侧),使得△QNC的面积与△QNA的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.
(1)求该抛物线的解析式;
(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;
(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.
“双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现:销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件.但要求销售单价不得低于成本.设当销售单价为x元时,每天的销售利润为y元.
(1)求出y与x之间的函数表达式;
(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要 元.
(每天的总成本=每件的成本×每天的销售量)