初中数学

(本小题满分8分)新华商场销售某种空调,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种空调的销售利润平均每天达到5000元,每台空调的定价应为多少元?

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

某超市经销一种成本为40元/kg的水产品,市场调查发现,按50元/kg销售,一个月能售出500kg,若每千克每涨1元,月销售量就减少10kg,针对这种水产品的销情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少元?

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

使分式的值等于零的x是()

A.6 B.﹣1或6 C.﹣1 D.﹣6
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

(1)已知一元二次方程的两根为,求证
(2)已知关于x的一元二次方程的两个不相等实数根满足,求a的值.
(3)已知抛物线与x轴交于A.B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,取得最小值,并求出最小值.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

我县某楼盘准备以每平方米4000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3240元的均价开盘销售.
(1)求平均每次下调的百分率.
(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

阅读下列例题:
解方程x2-|x|-2=0
解:(1)当x≥0时,原方程化为x2-x-2=0,解得x1=2,x2=-1(舍去).
当x<0时,原方程化为x2+x-2=0,解得x1=1(舍去),x2=-2.
∴x1=2,x2=-2是原方程的根.
请参照例题解方程:x2-|x-1|-1=0.

来源:2016届甘肃省敦煌市九年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知,如图:四边形ABCD中,∠C>90°,CD⊥AD于D,CB⊥AB于B,AB=,tanA是关于x的方程的一个实数根。

(1)求tanA;
(2)若CD=m,求BC的值。

来源:2016届湖南省衡阳市衡阳县江山学校九年级上学期第三次月考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

某超市经销一种成本为40元/的水产品,市场调查发现,按50元/销售,一个月能售出500,销售单价每涨1元,月销售量就减少10,针对这种水产品的销售情况,超市在月成本不超过10000元的情况下,使得月销售利润达到8000元,请你帮忙算算,销售单价定为多少?

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB),且OA、OB的长分别是一元二次方程x2-(+1)x+=0的两个根.点C在x轴负半轴上,且AB:AC=1:2.

(1)求A、C两点的坐标.
(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围.
(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由.

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

某超市销售一种旅游纪念品,平均每天可售出20套,每套盈利40元.“十一”期间,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每套降价1元,那么平均每天就可多售出2套.要想平均每天销售这种纪念品盈利1200元,那么每套应降价多少元?

来源:2016届甘肃省敦煌市九年级上学期期中考试数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

解方程:
(1)x(x-2)=x-2;
(2)(x+8)(x+1)=-12.

来源:2016届陕西省西安市莲湖区五校联考九年级上学期期中数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

某商场将某种商品的售价从原来的每件40元经两次调价后调至每件32.4元.
(1)若该商店两次调价的降价率相同,求这个降价率;
(2)经调查,该商品每降价0.2元,即可多销售10件.若该商品原来每月可销售500件,那么两次调价后,每月可销售该商品多少件?

  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

解方程
(1)x2-10x=96
(2)阅读下面的例题:
解方程x2-|x|-2=0.
解:分两种情况讨论:
①当x≥0时,原方程化为x2-x-2=0.
解得:x1=2,x2=-1(不合题意,舍去);
②当x<0时,原方程化为x2+x-2=0.
解得:x1=-2,x2=1(不合题意,舍去);
综上所述,原方程的根是x1=2,x2=-2.
请参照前面的例题的解法解方程:x2-|x-1|-1=0

来源:2016届福建省武平县城郊初中九年级上学期第三次月考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

已知关于的一元二次方程x2-4x+k+1=0
(1)若=-1是方程的一个根,求k值和方程的另一根;
(2)设x1,x2是关于x的方程x2-4x+k+1=0的两个实数根,是否存在实数k,使得x1x2>x1+x2成立?请说明理由.

来源:2016届江苏省南通市海安县李堡镇初中九年级上学期期中数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

对x,y定义一种新运算T,规定:(其中均为非零常数),这里等式右边是通常的四则运算,例如:
(1)已知T(1,﹣1)=﹣2,T(4,2)=1.
①求的值;
②若关于的方程T有实数解,求实数的值;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则应满足怎样的关系式?

来源:2016届重庆市开县五校九年级上学期期中联考数学试卷
  • 更新:2022-09-04
  • 题型:未知
  • 难度:未知

初中数学一元二次方程的最值试题