初中数学

为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中" "表示喜欢," × "表示不喜欢.

长跑

短跑

跳绳

跳远

200

×

300

×

×

150

×

200

×

×

150

×

×

×

(1)估计学生同时喜欢短跑和跳绳的概率;

(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;

(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?

来源:2016年宁夏中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;

维修次数

8

9

10

11

12

频数(台数)

10

20

30

30

10

(1)以这100台机器为样本,估计"1台机器在三年使用期内维修次数不大于10"的概率;

(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;

维修次数

8

9

10

11

12

频数(台数)

10

20

30

30

10

(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;

(2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

2015年国家实施“全面二孩政策”,人民医院迎来人口出生小高峰,某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?画出树状图或列表.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,

(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

我校九年一班现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表我班参加全校的数学竞赛.
(1)请用树状图或列表法列举出各种可能选派的结果;
(2)求恰好选派一男一女两位同学参赛的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一只不透明的袋子里共有4个球,其中3个白球,1个红球,它们除颜色外均相同.
(1)从袋子中随机摸出一个球是白球的概率是多少?
(2)从袋子中随机摸出一个球,不放回袋子,摇匀袋子后再摸一个球,请用列表或画树状图的方法,求出两次摸出的球都是白球的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为)、排球(记为)、足球(记为)中任选一项
(1)每位考生将有     种选择方案;
(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.
(1)用树状图或列表等方法列出所有可能出现的结果;
(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一个不透明的袋子里装有3张卡片,卡片上面分别标有字母,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并摇匀,再从盒子中随机抽出一张卡片记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,有四张背面相同的纸牌A、B、C、D,其正面分别画有四个不同的图形,小明将这四张纸牌背面朝上洗匀后随机摸出一张,放回后洗匀再随机摸出一张.

(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌用A、B、C、D表示);
(2)求两次摸出的牌面图形既是中心对称图形又是轴对称图形的概率.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题7分)一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1
(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P2,请直接写出P2的值,并比较P1,P2的大小.(2+3+2=7)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.
(1)若小明摸出的球不放回,求小明获胜的概率;
(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在一个不透明的口袋里装有分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样、正面分别写有数字6、7、8的卡片.现从口袋中任意摸出一个小球,再从这3张背面朝上的卡片中任意摸出一张卡片.
(1)请你用列表或画树状图的方法,表示出所有可能出现的结果;
(2)求这两次摸出的数字,至多有一次是“6”的概率;
(3)小红和小莉做游戏,制定了两个游戏规则:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.小红想要在游戏中获胜,她会选择哪一条规则,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分6分)为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的三个红球及编号为4的白球一个,四个小球除了颜色和编号不同外,没有任何的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.甲先摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分;得分高的获得入场卷,如果得分相同,游戏重来.
(1)运用列表或画树状图求甲得1分的概率;
(2)这个游戏是否公平?请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学利用频率估计概率计算题