如图, 中, , , ,将 绕点 顺时针旋转 得到△ , 为线段 上的动点, 以点 为圆心, 长为半径作 ,当 与 的边相切时, 的半径为 .
如图,若 内一点 满足 ,则称点 为 的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知 中, , , 为 的布罗卡尔点,若 ,则 .
如图,矩形 的四个顶点分别在矩形 的各条边上, , , .有以下四个结论:① ;② ;③ ;④矩形 的面积是 .其中一定成立的是 .(把所有正确结论的序号填在横线上)
以 的锐角顶点 为圆心,适当长为半径作弧,与边 , 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点 作直线,与边 交于点 .若 ,点 到 的距离为2,则 的长为 .
在平面直角坐标系中,如果点 坐标为 ,向量 可以用点 的坐标表示为 .
已知: , , , ,如果 ,那么 与 互相垂直,下列四组向量:
① , ;
② , ;
③ , , , ;
④ , , .
其中互相垂直的是 (填上所有正确答案的符号).
一副含 和 角的三角板 和 叠合在一起,边 与 重合, (如图 ,点 为边 的中点,边 与 相交于点 ,此时线段 的长是 .现将三角板 绕点 按顺时针方向旋转(如图 ,在 从 到 的变化过程中,点 相应移动的路径长共为 .(结果保留根号)
如图,点 在直线 上,过点 作 交直线 于点 ,以 为边在△ 外侧作等边三角形 ,再过点 作 ,分别交直线 和 于 , 两点,以 为边在△ 外侧作等边三角形 , 按此规律进行下去,则第 个等边三角形 的面积为 .(用含 的代数式表示)
如图,把一个菱形绕着它的对角线的交点旋转 ,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为 ,边长为2,则该“星形”的面积是 .