初中数学

(1)计算:3sin30°-2cos45°+tan2600;
(2)在Rt△ABC中,∠C=90° , c=20,∠A=30° , 解这个直角三角形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

计算或化简求值
(1)
(2)先化简:,其中

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分8分)如图,湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请求出小桥PD的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AC,BD交于点O,若BO=3,,求矩形ABCD的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在教学实践课中,小明为了测量学校旗杆CD的高度,在地面A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,AC=22米,求旗杆CD的高度.(结果精确到0.1米.参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在A岛周围25海里的范围内有暗礁.一轮船由西向东航行到B处时,发现A岛在北偏东60°方向,轮船继续前行20海里,到达C处,发现A岛在北偏东45°方向,该船若不改变航向继续前行,有无触礁的危险?(结果精确到0.1海里)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

请阅读下列材料:
问题:如图(1),圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:
路线1:高线AB+底面直径BC,如图(1)所示.
路线2:侧面展开图中的线段AC,如图(2)所示.

设路线1的长度为l1,则l1=AB+BC=2+8=10;
设路线2的长度为l2,则l2===
=102﹣(4+16π2)=96﹣16π2=16(6﹣π2)<0
即l1<l2
所以选择路线1较短.
(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)
①此时,路线1:l1=        .路线2:l2=             
②所以选择哪条路线较短?试说明理由.
(2)请你帮小明继续研究:当圆柱的底面半径为2cm,高为hcm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)已知,求的值.
(2)已知是锐角△ABC的三个内角,且满足,求的度数.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题7分)先化简,再求值:,其中x=2cos30°+tan45.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)计算:+ sin45°·cos45°     
(2)解方程:x2−5x −6 = 0

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)计算:2014﹣(﹣1)2014+﹣|﹣3|
(2)先化简,再求值:÷,其中x=4cos60°+1.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,求小鸟至少飞行的距离.
 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题共有2小题,每小题4分,共8分)
(1)计算:;    
(2)解方程组: 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)计算:
(2)先化简,再求值:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学解直角三角形解答题