如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.
(1)求线段CD的长;
(2)当t为何值时,△CPQ与△ABC相似?
(3)当t为何值时,△CPQ为等腰三角形?
从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在 中, 为角平分线, , ,求证: 为 的完美分割线.
(2)在 中, , 是 的完美分割线,且 为等腰三角形,求 的度数.
(3)如图2, 中, , , 是 的完美分割线,且 是以 为底边的等腰三角形,求完美分割线 的长.
如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A.3秒或4.8秒 B.3秒
C.4.5秒 D.4.5秒或4.8秒
如图,在 中, , 平分 交 于点 , 是 上一点,经过 , 两点的 交 于点 ,连接 ,作 的平分线 交 于点 ,连接 .
(1)求证: 是 的切线.
(2)若 , ,求线段 的长.
如图,在 中, , , 为边 上一动点 点除外),以 为一边作正方形 ,连接 ,则 面积的最大值为 .
由四个全等的直角三角形和一个小正方形组成的大正方形 如图所示.过点 作 的垂线交小正方形对角线 的延长线于点 ,连结 ,延长 交 于点 .若 ,则 的值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 与 相切于点 ,过点 作 的垂线交 的延长线于点 ,交 于点 ,连结 .
(1)求证: 是 的切线.
(2)若 , ,求 的长.
如图, 为 的直径,弦 于点 , 于点 ,若 , ,则 的长度是
A. |
9.6 |
B. |
|
C. |
|
D. |
10 |
如图, 与 交于点 , , , 为 延长线上一点,过点 作 ,交 的延长线于点 .
(1)求证 ;
(2)若 , , ,求 的长.
如图,在 中, ,以其三边为边向外作正方形,过点 作 于点 ,再过点 作 分别交边 , 于点 , .若 , ,则 的长为
A.14B.15C. D.
定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形 中, ,求 的取值范围;
(2)如图,折叠平行四边形纸片 ,使顶点 , 分别落在边 , 上的点 , 处,折痕分别为 , .求证:四边形 是三等角四边形.
(3)三等角四边形 中, ,若 ,则当 的长为何值时, 的长最大,其最大值是多少?并求此时对角线 的长.
如图,在矩形 中, , 分别为边 , 的中点, 与 、 分别交于点 , .已知 , ,则 的长为 .
如图,点 为正方形 的对角线 上的一点,连接 并延长交 于点 ,交 的延长线于点 , 是 的外接圆,连接 .
(1)求证: 是 的切线;
(2)若 ,正方形 的边长为4,求 的半径和线段 的长.