如图,在 中, , ,将 绕点 旋转得到 △ ,使点 的对应点 落在 上,在 上取点 ,使 ,那么点 到 的距离等于
A. B. C. D.
如图,将 绕点 顺时针旋转角 ,得到 ,若点 恰好在 的延长线上,则 等于
A. B. C. D.
如图1,在等腰三角形 中, , ,点 、 分别在边 、 上, ,连接 ,点 、 、 分别为 、 、 的中点.
(1)观察猜想.
图1中,线段 、 的数量关系是 , 的大小为 .
(2)探究证明
把 绕点 顺时针方向旋转到如图2所示的位置,连接 、 、 ,判断 的形状,并说明理由;
(3)拓展延伸
把 绕点 在平面内自由旋转,若 , ,请求出 面积的最大值.
如图,点 是正方形 内一点,且点 到点 、 、 的距离分别为 、 、4,则正方形 的面积为 .
如图1,矩形 中, , , 中, , , , 的延长线相交于点 ,且 , , .将 绕点 逆时针旋转 得到△ .
(1)当 时,求点 到直线 的距离.
(2)在图1中,取 的中点 ,连结 ,如图2.
①当 与矩形 的一条边平行时,求点 到直线 的距离.
②当线段 与矩形 的边有且只有一个交点时,求该交点到直线 的距离的取值范围.
如图,等腰直角三角形 中, , ,将 绕点 顺时针旋转 ,得到 ,连结 ,过点 作 交 的延长线于点 ,连结 ,则 的度数
A.随着 的增大而增大B.随着 的增大而减小
C.不变D.随着 的增大,先增大后减小
图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为 , (点 与点 重合),点 是夹子转轴位置, 于点 , 于点 , , , , .按图示方式用手指按夹子,夹子两边绕点 转动.
(1)当 , 两点的距离最大时,以点 , , , 为顶点的四边形的周长是 .
(2)当夹子的开口最大(即点 与点 重合)时, , 两点的距离为 .
如图,正三角形 的边长为3,将 绕它的外心 逆时针旋转 得到△ ,则它们重叠部分的面积是
A. B. C. D.
如图, 由 绕点 按逆时针方向旋转 得到,且点 的对应点 恰好落在 的延长线上, , 相交于点 .
(1)求 的度数;
(2) 是 延长线上的点,且 .
①判断 和 的数量关系,并证明;
②求证: .
如图,在 中, , , ,将 绕点 逆时针旋转得到 △ ,使点 落在 边上,连接 ,则 的长度是
A. B. C. D.
将正方形 的边 绕点 逆时针旋转至 ,记旋转角为 ,连接 ,过点 作 垂直于直线 ,垂足为点 ,连接 , .
(1)如图1,当 时, 的形状为 ,连接 ,可求出 的值为 ;
(2)当 且 时,
①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;
②当以点 , , , 为顶点的四边形是平行四边形时,请直接写出 的值.
如图,在 中, ,将 绕点 顺时针旋转得到 ,使点 的对应点 恰好落在边 上,点 的对应点为 ,延长 交 于点 ,则下列结论一定正确的是
A. B. C. D.
如图,在 中, , ,点 是 边上一动点,连接 ,把 绕点 逆时针旋转 ,得到 ,连接 , .点 是 的中点,连接 .
(1)求证: ;
(2)如图2所示,在点 运动的过程中,当 时,分别延长 , ,相交于点 ,猜想 与 存在的数量关系,并证明你猜想的结论;
(3)在点 运动的过程中,在线段 上存在一点 ,使 的值最小.当 的值取得最小值时, 的长为 ,请直接用含 的式子表示 的长.
综合与实践
问题情境:
如图①,点 为正方形 内一点, ,将 绕点 按顺时针方向旋转 ,得到 (点 的对应点为点 .延长 交 于点 ,连接 .
猜想证明:
(1)试判断四边形 的形状,并说明理由;
(2)如图②,若 ,请猜想线段 与 的数量关系并加以证明;
解决问题:
(3)如图①,若 , ,请直接写出 的长.