如图,在矩形 中, ,将矩形 绕点 逆时针旋转,得到矩形 ,点 的对应点 落在 上,且 ,则 的长为 .
定义:在平面直角坐标系中,一个图形先向右平移 个单位,再绕原点按顺时针方向旋转 角度,这样的图形运动叫作图形的 变换.
如图,等边 的边长为1,点 在第一象限,点 与原点 重合,点 在 轴的正半轴上.△ 就是 经 变换后所得的图形.
若 经 变换后得△ ,△ 经 变换后得△ ,△ 经 变换后得△ ,依此类推
△ 经 变换后得△ ,则点 的坐标是 ,点 的坐标是 .
如图,已知点 和点 ,点 在反比例函数 的图象上,作射线 ,再将射线 绕点 按逆时针方向旋转 ,交反比例函数图象于点 ,则点 的坐标为 .
一副含 和 角的三角板 和 叠合在一起,边 与 重合, (如图 ,点 为边 的中点,边 与 相交于点 ,此时线段 的长是 .现将三角板 绕点 按顺时针方向旋转(如图 ,在 从 到 的变化过程中,点 相应移动的路径长共为 .(结果保留根号)
如图,把一个菱形绕着它的对角线的交点旋转 ,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为 ,边长为2,则该“星形”的面积是 .
如图, 是等腰直角三角形, , ,把 绕点 按顺时针方向旋转 后得到△ ,则线段 在上述旋转过程中所扫过部分(阴影部分)的面积是 .
如图, 的顶点 在坐标原点, 边在 轴上, , ,把 绕点 按顺时针方向旋转到△ ,使得点 的坐标是 ,则在旋转过程中线段 扫过部分(阴影部分)的面积为 .
将形状、大小完全相同的两个等腰三角形如图所示放置,点 在 边上, 绕点 旋转,腰 和底边 分别交 的两腰 , 于 , 两点,若 , , ,则 的最小值为 .
是等边三角形,点 是三条高的交点.若 以点 为旋转中心旋转后能与原来的图形重合,则 旋转的最小角度是 .
如图,在正方形 中, ,把边 绕点 逆时针旋转 得到线段 ,连接 并延长交 于点 ,连接 ,则三角形 的面积为 .
如图,正方形 的边长为1,点 与原点重合,点 在 轴的正半轴上,点 在 轴的负半轴上,将正方形 绕点 逆时针旋转 至正方形 的位置, 与 相交于点 ,则点 的坐标为 .
如图,已知 ,点 , 分别在 , 上,且 ,将射线 绕点 逆时针旋转得到 ,旋转角为 且 ,作点 关于直线 的对称点 ,画直线 交 于点 ,连接 , ,有下列结论:
① ;
② 的大小随着 的变化而变化;
③当 时,四边形 为菱形;
④ 面积的最大值为 ;
其中正确的是 .(把你认为正确结论的序号都填上).