如图,将矩形 沿对角线 折叠,点 落在点 处, 交 于点 ,已知 ,则 的度数为
A. B. C. D.
如图, 是 的 边上一点,连接 ,作 的外接圆,将 沿直线 折叠,点 的对应点 落在 上.
(1)求证: .
(2)若 , , ,求 的长.
将一张圆形纸片(圆心为点 沿直径 对折后,按图1分成六等份折叠得到图2,将图2沿虚线 剪开,再将 展开得到如图3的一个六角星.若 ,则 的度数为 .
在 中, 、 分别是 、 上的点,将平行四边形 沿 所在直线翻折,使点 与点 重合,且点 落在点 处.
(1)求证:△ ;
(2)连接 ,若 , ,求四边形 的面积.
一张矩形纸片 ,已知 , ,小明按如图步骤折叠纸片,则线段 长为
A. B. C.1D.2
如图,三角形纸片 , , ,点 为 中点,沿过点 的直线折叠,使点 与点 重合,折痕交 于点 .已知 ,则 的长是
A. |
|
B. |
3 |
C. |
|
D. |
|
(1)如图1,将矩形 折叠,使 落在对角线 上,折痕为 ,点 落在点 处,若 ,则 的度数为 .
(2)小明手中有一张矩形纸片 , , .
【画一画】
如图2,点 在这张矩形纸片的边 上,将纸片折叠,使 落在 所在直线上,折痕设为 (点 , 分别在边 , 上),利用直尺和圆规画出折痕 (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);
【算一算】
如图3,点 在这张矩形纸片的边 上,将纸片折叠,使 落在射线 上,折痕为 ,点 , 分别落在点 , 处,若 ,求 的长;
【验一验】
如图4,点 在这张矩形纸片的边 上, ,将纸片折叠,使 落在 所在直线上,折痕为 ,点 , 分别落在点 , 处,小明认为 所在直线恰好经过点 ,他的判断是否正确,请说明理由.
折叠矩形纸片 时,发现可以进行如下操作:①把 翻折,点 落在 边上的点 处,折痕为 ,点 在 边上;②把纸片展开并铺平;③把 翻折,点 落在线段 上的点 处,折痕为 ,点 在 边上,若 , ,则 .
如图,将矩形 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形 , 厘米, 厘米,则边 的长是
A.12厘米B.16厘米C.20厘米D.28厘米
如图,在以线段 为直径的 上取一点 ,连接 、 .将 沿 翻折后得到 .
(1)试说明点 在 上;
(2)在线段 的延长线上取一点 ,使 .求证: 为 的切线;
(3)在(2)的条件下,分别延长线段 、 相交于点 ,若 , ,求线段 的长.
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图,将长、宽分别为 , 的长方形纸片分别沿 , 折叠,点 , 恰好重合于点 .若 ,则折叠后的图案(阴影部分)面积为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , , , ,点 是边 上一点,连接 ,将 沿 翻折得到 .
(1)若 , ,且 ,求 的长;
(2)连接 ,若四边形 是平行四边形,求 与 之间的关系式.
如图, 是等边 边 上的点, , .现将 折叠,使得点 与点 重合,折痕为 ,且点 、 分别在边 和 上,则 .