初中数学

如图,已知正方形纸片ABCD的边长为8,⊙O的半径为2,圆心在正方形的中心上,将纸片按图示方式折叠,使EA’恰好与⊙O相切于点A ′(△EFA′与⊙O除切点外无重叠部分),延长FA′交CD边于点G,则AG的长是        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中, AB = 2 cm ,将矩形 ABCD 沿某直线折叠,使点 B 与点 D 重合,折痕与直线 AD 交于点 E ,且 DE = 3 cm ,则矩形 ABCD 的面积为    c m 2

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,将矩形ABCD沿AE向上折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF的周长为3,则矩形ABCD的周长为        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=, 则的度数为        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,有一张矩形纸条 ABCD AB = 5 cm BC = 2 cm ,点 M N 分别在边 AB CD 上, CN = 1 cm .现将四边形 BCNM 沿 MN 折叠,使点 B C 分别落在点 B ' C ' 上.当点 B ' 恰好落在边 CD 上时,线段 BM 的长为   cm ;在点 M 从点 A 运动到点 B 的过程中,若边 M B ' 与边 CD 交于点 E ,则点 E 相应运动的路径长为   cm

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将矩形纸片 ABCD 折叠 ( AD > AB ) ,使 AB 落在 AD 上, AE 为折痕,然后将矩形纸片展开铺在一个平面上, E 点不动,将 BE 边折起,使点 B 落在 AE 上的点 G 处,连接 DE ,若 DE = EF CE = 2 ,则 AD 的长为   

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

将一张圆形纸片(圆心为点 O ) 沿直径 MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线 AB 剪开,再将 ΔAOB 展开得到如图3的一个六角星.若 CDE = 75 ° ,则 OBA 的度数为   

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,将三角形纸片 ABC折叠,使点 BC都与点 A重合,折痕分别为 DEFG.已知 ACB 15 ° AE EF DE = 3 ,则 BC的长为   

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图是一张矩形纸片,点 E AB 边上,把 ΔBCE 沿直线 CE 对折,使点 B 落在对角线 AC 上的点 F 处,连接 DF .若点 E F D 在同一条直线上, AE = 2 ,则 DF =    BE =   

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,三角形纸片 ABC 中,点 D E F 分别在边 AB AC BC 上, BF = 4 CF = 6 ,将这张纸片沿直线 DE 翻折,点 A 与点 F 重合.若 DE / / BC AF = EF ,则四边形 ADFE 的面积为   

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,将 ABCD 沿对角线 AC 翻折,点 B 落在点 E 处, CE AD 于点 F ,若 B = 80 ° ACE = 2 ECD FC = a FD = b ,则 ABCD 的周长为   

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD AB = 6 cm BC = 8 cm E 为边 CD 上一点.将 ΔBCE 沿 BE 所在的直线折叠,点 C 恰好落在 AD 边上的点 F 处,过点 F FM BE ,垂足为点 M ,取 AF 的中点 N ,连接 MN ,则 MN =    cm

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中,点 G E 分别在边 BC DC 上,连接 AG EG AE ,将 ΔABG ΔECG 分别沿 AG EG 折叠,使点 B C 恰好落在 AE 上的同一点,记为点 F .若 CE = 3 CG = 4 ,则 sin DAE =   

来源:2020年山东省潍坊市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 2 2 AC = 6 ,点 E 在线段 AC 上,且 AE = 1 D 是线段 BC 上的一点,连接 DE ,把四边形 ABDE 沿直线 DE 翻折,得到四边形 F GDE ,当点 G 恰好落在线段 AC 上时, AF =   

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AB 的中点, P BC 边上的任意一点,把 ΔPBE 沿 PE 折叠,得到 ΔPFE ,连接 CF .若 AB = 10 BC = 12 ,则 CF 的最小值为  

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)填空题