初中数学

如图,把一张矩形纸片 ABCD 按所示方法进行两次折叠,得到等腰直角三角形 BEF ,若 BC = 1 ,则 AB 的长度为 (    )

A. 2 B. 2 + 1 2 C. 5 + 1 2 D. 4 3

来源:2020年浙江省衢州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将矩形纸片 ABCD 沿 EF 折叠后,点 D C 分别落在点 D 1 C 1 的位置, E D 1 的延长线交 BC 于点 G ,若 EFG = 64 ° ,则 EGB 等于 (    )

A.

128 °

B.

130 °

C.

132 °

D.

136 °

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片 ABCD 沿过点 A 的直线折叠,使得点 B 落在 CD 上的点 Q 处.折痕为 AP ;再将 ΔPCQ ΔADQ 分别沿 PQ AQ 折叠,此时点 C D 落在 AP 上的同一点 R 处.请完成下列探究:

(1) PAQ 的大小为     

(2)当四边形 APCD 是平行四边形时, AB QR 的值为   

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AC 2 2 ABC 45 ° BAC 15 ° ,将 ACB 沿直线 AC翻折至 ABC 所在的平面内,得 ACD .过点 A AE ,使 DAE DAC ,与 CD 的延长线交于点 E,连接 BE,则线段 BE的长为(  )

A.

6

B.

3

C.

2 3

D.

4

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD AB = 6 cm BC = 8 cm E 为边 CD 上一点.将 ΔBCE 沿 BE 所在的直线折叠,点 C 恰好落在 AD 边上的点 F 处,过点 F FM BE ,垂足为点 M ,取 AF 的中点 N ,连接 MN ,则 MN =    cm

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AD / / BC AB BC AB = 3 ,点 E 为射线 BC 上一个动点,连接 AE ,将 ΔABE 沿 AE 折叠,点 B 落在点 B ' 处,过点 B ' AD 的垂线,分别交 AD BC M N 两点,当 B ' 为线段 MN 的三等分点时, BE 的长为 (    )

A.

3 2

B.

3 2 2

C.

3 2 3 2 2

D.

3 2 2 3 5 5

来源:2021年内蒙古通辽市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,点 E DC 上,将矩形沿 AE 折叠,使点 D 落在 BC 边上的点 F 处.若 AB = 3 BC = 5 ,则 tan DAE 的值为 (    )

A. 1 2 B. 9 20 C. 2 5 D. 1 3

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,三角形纸片 ABC 中,点 D E F 分别在边 AB AC BC 上, BF = 4 CF = 6 ,将这张纸片沿直线 DE 翻折,点 A 与点 F 重合.若 DE / / BC AF = EF ,则四边形 ADFE 的面积为   

来源:2021年重庆市中考数学试卷(A卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是一张正方形纸片,其面积为 25 c m 2 .分别在边 AB BC CD DA 上顺次截取 AE = BF = CG = DH = acm ( AE > BE ) ,连接 EF FG GH HE .分别以 EF FG GH HE 为轴将纸片向内翻折,得到四边形 A 1 B 1 C 1 D 1 .若四边形 A 1 B 1 C 1 D 1 的面积为 9 c m 2 ,则 a =   

来源:2020年山东省威海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将 ABCD 沿对角线 AC 翻折,点 B 落在点 E 处, CE AD 于点 F ,若 B = 80 ° ACE = 2 ECD FC = a FD = b ,则 ABCD 的周长为   

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,对折矩形纸片 ABCD ,使 AD BC 重合,得到折痕 EF ,把纸片展平后再次折叠,使点 A 落在 EF 上的点 A ' 处,得到折痕 BM BM EF 相交于点 N .若直线 BA ' 交直线 CD 于点 O BC = 5 EN = 1 ,则 OD 的长为 (    )

A. 1 2 3 B. 1 3 3 C. 1 4 3 D. 1 5 3

来源:2020年山东省滨州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,三角形纸片 ABC AB = AC BAC = 90 ° ,点 E AB 中点,沿过点 E 的直线折叠,使点 B 与点 A 重合,折痕交 BC 于点 F .已知 EF = 3 2 ,则 BC 的长是 (    )

A.

3 2 2

B.

3

C.

3 2

D.

3 3

来源:2021年山东省枣庄市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,将长、宽分别为 12 cm 3 cm 的长方形纸片分别沿 AB AC 折叠,点 M N 恰好重合于点 P .若 α = 60 ° ,则折叠后的图案(阴影部分)面积为 (    )

A.

( 36 - 6 3 ) c m 2

B.

( 36 - 12 3 ) c m 2

C.

24 c m 2

D.

36 c m 2

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

对给定的一张矩形纸片 ABCD 进行如下操作:先沿 CE 折叠,使点 B 落在 CD 边上(如图① ) ,再沿 CH 折叠,这时发现点 E 恰好与点 D 重合(如图② )

(1)根据以上操作和发现,求 CD AD 的值;

(2)将该矩形纸片展开.

①如图③,折叠该矩形纸片,使点 C 与点 H 重合,折痕与 AB 相交于点 P ,再将该矩形纸片展开.求证: HPC = 90 °

②不借助工具,利用图④探索一种新的折叠方法,找出与图③中位置相同的 P 点,要求只有一条折痕,且点 P 在折痕上,请简要说明折叠方法.(不需说明理由)

来源:2018年江苏省泰州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)试题