如图1,平行四边形 中, , , ,点 在边 上运动,以 为圆心, 为半径的 与对角线 交于 , 两点.
(1)如图2,当 与边 相切于点 时,求 的长;
(2)不难发现,当 与边 相切时, 与平行四边形 的边有三个公共点,随着 的变化, 与平行四边形 的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的 的值的取值范围 .
(材料阅读)
地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图1中的 .人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图2所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角 的大小是变化的.
(实际应用)
观测点 在图1所示的 上,现在利用这个工具尺在点 处测得 为 ,在点 所在子午线往北的另一个观测点 ,用同样的工具尺测得 为 . 是 的直径, .
(1)求 的度数;
(2)已知 ,求这两个观测点之间的距离即 上 的长. 取
如图, 为 的直径, 为 上一点, 和过点 的切线互相垂直,垂足为 ,且交 于点 .连接 , ,相交于点 .
(1)求证: ;
(2)若 , ,求直径 的长.
如图, 是 的直径, 与 相切于点 ,与 的延长线交于 .
(1)求证: ;
(2)若 , ,求 半径.
如图, 是 的直径, 为弦, 的平分线交 于点 ,过点 的切线交 的延长线于点 .
求证:(1) ;
(2) .
如图, 是 的切线,切点为 , 的延长线交 于点 ,若 ,则 的度数为
A. B. C. D.
如图, 中, , , ,将 绕点 顺时针旋转 得到△ , 为线段 上的动点, 以点 为圆心, 长为半径作 ,当 与 的边相切时, 的半径为 .
如图, 是 的直径, 为 上一点, 和过点 的切线互相垂直,垂足为 .
(1)求证: ;
(2)若 , ,求 的长.
如图, 为 的直径, , 弦 ,垂足为 , 切 于点 , ,连接 、 、 ,下列结论不正确的是
A. |
|
B. |
是等边三角形 |
C. |
|
D. |
的长为 |
如图, 为 的内接三角形, 为 的直径,过点 作 的切线交 的延长线于点 .
(1)求证: ;
(2)过点 作 的切线 交 于点 ,求证: ;
(3)若点 为直径 下方半圆的中点,连接 交 于点 ,且 , ,求 的长.