如图, AB 是 ⊙ O 的直径, CD 与 ⊙ O 相切于点 C ,与 AB 的延长线交于 D .
(1)求证: ΔADC ∽ ΔCDB ;
(2)若 AC = 2 , AB = 3 2 CD ,求 ⊙ O 半径.
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示. 操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH 操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF 则四边形BCEF为矩形 证明:设正方形ABCD的边长为1,则BD==. 由折叠性质可知BG=BC=1,,则四边形BCEF为矩形 阅读以上内容,回答下列问题: 在图①中,所有与CH相等的线段是 ,tan的值是 已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图。 求证:四边形BCMN是矩形 将图②中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是
在平面直角坐标系中,已知点A(-3,1),B(-2,0),C(0,1),请在图中画出△ABC,并画出与△ABC关于原点O对称的图形.
如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是______.
如图,将△ABC绕点A按顺时针方向旋转60°得△ADE,则∠BAD= 度.