正方形ABCD与正方形CEFG的位置如图所示,点G在线段CD或CD的延长线上. 分别连接BD,BF,FD,得到△BFD. (1)在图中,若正方形CEFG的边长分别为1,3,4,且正方形ABCD的边长均为3,请通过计算填写下表:
正方形CEF![]() |
1 |
3 |
4 |
△BFD的面积 |
|
|
|
(2)若正方形CEFG的边长为a,正方形ABCD的边长为b,猜想S△BFD的大小,并结合图证明你的猜想.
(10分)如图,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;
(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图,连接AE和GC. 你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.
(本题7分)如图,在梯形ABCD中,AD∥BC,M,N分别是AD,BC的中点,E,F分别是BM,CM的中点.(1)证明四边形MENF是平行四边形;
(2)若使四边形MENF是菱形,还需在梯形ABCD中添加什么条件?请你写出这个条件.
观察与发现:
在一次数学课堂上,老师把三角形纸片ABC(AB>AC)沿过A点的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).有同学说此时的△AEF是等腰三角形,你同意吗?请说明理由.实践与运用
将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点处,折痕为EG(如图④);再展平纸片(如图⑤).试问:图⑤中∠
的大小是多少?(直接回答,不用说明理由).
(本题10分)如图,在梯形ABCD中,AD//BC,E是BC的中点,AD="5" cm,BC="12" cm,CD= cm,∠C=45°,点P从B点出发,沿着BC方向以1cm/s运动,到达点C停止,设P运动了ts。
(1)当t为何值时以点P、A、D、E为顶点的四边形为直角梯形;
(2)当t为何值时以点P、A、D、E为顶点的四边形为平行四边形;
(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?如能,请求出t值,如不能请说明理由。
(本题10分) 以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连结这四个点得四边形EFGH.如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;(1)如图2,当四边形ABCD为矩形时,则四边形EFGH的形状是 ;
(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=
(0°<
<90°),
① 试用含
的代数式表示∠HAE= ;
② 求证:HE=HG;③ 四边形EFGH是什么四边形?并说明理由.
(本题7分)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形.
(本题5分)如图,四边形ABCD中,AB=CD,点E、F、G、H分别是BC、AD、BD、AC的中点,
猜想四边形EHFG的形状,并说明理由。
(6分)如图,四边形ABCD中,AD不平行BC,现给出三个条件:①∠CAB=∠DBA;
②AC=BD;③AD=BC.请你从上述三个条件中选择两个条件,使得加上这两个条件
后能够推出四边形ABCD是等腰梯形,并加以说明(只需说明一种情况).
(6分)如图,在菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长线于点F. (1)DE和BF相等吗?请说明理由;
(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.
如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.求证:
平分
;
若
,求
的面积.
(1)如图1,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是平行四边形,请你只用无刻度的直尺在图中画出∠AOB的平分线.(保留作图痕迹,不要求写作法)
(2)如图2,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一边为边画等腰三角形,使它的第三个顶点在△ABC的其它边上.请在图①、图②、图③中分别画出一个符合条件的等腰三角形,且三个图形中的等腰三角形各不相同,并在图下方的横线上写明所画等腰三角形的腰和腰长(不要求尺规作图).
|
综合实践活动课上,老师让同学们在一张足够大的纸板上裁出符合如下要求的梯形,
即“梯形ABCD,AD∥BC,AD=2分米,AB=分米,CD=
分米,梯形的高是
2分米”.请你计算裁得的梯形ABCD中BC边的长度.
如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线.
(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的是_______;
(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD =S△ADE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);
(3)如图2,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出说明;若不能,说明理由.
(1)操作发现:
如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.