如图,正方形ABCD的面积为18 ,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,则PD+PE的最小值为__________.
如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为cm的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积( )
A. | B. |
C. | D. |
(1)按语句作图并回答:
作线段AC(AC=4),以A为圆心a为半径作圆,再以C为圆心b为半径作圆(,,圆A与圆C交于B、D两点),连结AB、BC、CD、DA.若能作出满足要求的四边形ABCD,则应满足什么条件?
(2)若,求四边形ABCD的面积.
如图,已知平行四边形ABCD,过A作AM⊥BC于M,交BD于E,过C作CN⊥AD于N,交BD于F,连结AF、CE.
(1)求证:四边形AECF为平行四边形;
(2)当AECF为菱形,M点为BC的中点时,求AB:AE的值.
将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,EB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为( )
正方形ABCD,矩形EFGH均位于第一象限内,它们的边平行于x轴或y轴,其中,点A,E在直线OM上,点C,G在直线ON上,O为坐标原点,点A的坐标为(3,3),正方形ABCD的边长为1.若矩形EFGH的周长为10,面积为6,则点F的坐标为 .
已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是
A.矩形 | B.菱形 | C.等腰梯形 | D.正方形 |
四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有
A.1组 B.2组 C.3组 D.4组
已知菱形ABCD的边长为6,∠A=600,如果点P是菱形内一点,且PB="PD" =2,那么AP的长为 .
如图,在直角坐标系中,点的坐标为,点在直线上运动,点、、分别为、、的中点,其中是大于零的常数.
(1)请判断四边形的形状,并证明你的结论;
(2)试求四边形的面积与的关系式;
(3)设直线与轴交于点,问:四边形能不能是矩形?若能,求出的值;若不能,说明理由.
如图,正方形ABCD是⊙O的内接正方形,点P是⌒CD上不同于点C的任意一点,则∠BPC的度数是_____________度.
如图,在直角梯形中,AB∥CD;⊥动点从点出发,沿,运动至点停止.设点运动的路程为,的面积为,如果关于的函数图象如图所示,则的面积是( )
A.3 | B.4 | C.5 | D.6 |
如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=4cm,BC=2cm,AB=3cm.从初始时刻开始,动点P、Q分别从点A、B同时出发,运动速度均为1 cm/s,动点P沿A→B→C→E的方向运动,到点E停止;动点Q沿B→C→E→D的方向运动,到点D停止.设运动时间为s,PAQ的面积为y cm2.(这里规定:线段是面积为0的三角形)解答下列问题:
(1)当x=" 2" s时,y=________cm2;当= s时,y=________cm2;
(2)当动点P在线段BC上运动,即3 ≤ x ≤ 5时,求y与之间的函数关系式,并求出时的值;
(3)当动点P在线段CE上运动,即5 < x ≤ 8 时,求y与之间的函数关系式;
(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值.
如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为 .