初中数学

(年江西省南昌市)⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).
(1)如图1,AC=BC;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A的坐标是(10,0),点B的坐标为(8,0),点C,D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为     .

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,圆 O 中两条互相垂直的弦 AB CD 交于点 E

(1) M CD 的中点, OM = 3 CD = 12 ,求圆 O 的半径长;

(2)点 F CD 上,且 CE = EF ,求证: AF BD

来源:2021年安徽省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图, O 的半径为1,点 A O 的直径 BD 延长线上的一点, C O 上的一点, AD = CD A = 30 °

(1)求证:直线 AC O 的切线;

(2)求 ΔABC 的面积;

(3)点 E BND ̂ 上运动(不与 B D 重合),过点 C CE 的垂线,与 EB 的延长线交于点 F

①当点 E 运动到与点 C 关于直径 BD 对称时,求 CF 的长;

②当点 E 运动到什么位置时, CF 取到最大值,并求出此时 CF 的长.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, AB 是半圆的直径, C 为半圆的中点, A ( 2 , 0 ) B ( 0 , 1 ) ,反比例函数 y = k x ( x > 0 ) 的图象经过点 C ,则 k 的值为   

来源:2021年辽宁省本溪市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径. BC O 的弦,弦 ED 垂直 AB 于点 F ,交 BC 于点 G .过点 C O 的切线交 ED 的延长线于点 P

(1)求证: PC = PG

(2)判断 P G 2 = PD PE 是否成立?若成立,请证明该结论;

(3)若 G BC 中点, OG = 5 sin B = 5 5 ,求 DE 的长.

来源:2021年黑龙江省大庆市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在 O 中, AC O 的直径, AB O 的弦,点 E AC ̂ 的中点,过点 E AB 的垂线,交 AB 于点 M ,交 O 于点 N ,分别连接 EB CN

(1) EM BE 的数量关系是   

(2)求证: EB ̂ = CN ̂

(3)若 AM = 3 MB = 1 ,求阴影部分图形的面积.

来源:2021年贵州省贵阳市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC O ΔABC 的外接圆, BO 的延长线交边 AC 于点 D

[小题1]求证: BAC = 2 ABD

[小题2]当 ΔBCD 是等腰三角形时,求 BCD 的大小;

[小题3]当 AD = 2 CD = 3 时,求边 BC 的长.

来源:2020年上海市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图1是一个用铁丝围成的篮筐,我们来仿制一个类似的柱体形篮筐.如图2,它是由一个半径为 r 、圆心角 90 ° 的扇形 A 2 O B 2 ,矩形 A 2 C 2 EO B 2 D 2 EO ,及若干个缺一边的矩形状框 A 1 C 1 D 1 B 1 A 2 C 2 D 2 B 2 A n B n C n D n OEFG 围成,其中 A 1 G B 1 A 2 B 2 ̂ 上, A 2 A 3 A n B 2 B 3 B n 分别在半径 O A 2 O B 2 上, C 2 C 3 C n D 2 D 3 D n 分别在 E C 2 E D 2 上, EF C 2 D 2 H 2 C 1 D 1 EF H 1 F H 1 = H 1 H 2 = d C 1 D 1 C 2 D 2 C 3 D 3 C n D n 依次等距离平行排放(最后一个矩形状框的边 C n D n 与点 E 间的距离应不超过 d ) A 1 C 1 / / A 2 C 2 / / A 3 C 3 / / / / A n C n

(1)求 d 的值;

(2)问: C n D n 与点 E 间的距离能否等于 d ?如果能,求出这样的 n 的值,如果不能,那么它们之间的距离是多少?

来源:2016年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,则的外接圆半径的值为  

问题探究

(2)如图②,的半径为13,弦的中点,上一动点,求的最大值.

问题解决

(3)如图③所示,是某新区的三条规划路,其中所对的圆心角为,新区管委会想在路边建物资总站点,在路边分别建物资分站点,也就是,分别在、线段上选取点.由于总站工作人员每天都要将物资在各物资站点间按的路径进行运输,因此,要在各物资站点之间规划道路.为了快捷、环保和节约成本.要使得线段之和最短,试求的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)

来源:2018年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学垂径定理试题