如图,已知⊙ O的直径为 AB, AC⊥ AB于点 A, BC与⊙ O相交于点 D,在 AC上取一点 E,使得 ED= EA.
(1)求证: ED是⊙ O的切线;
(2)当 OE=10时,求 BC的长.
如图,在平面直角坐标系中, O(0,0), A(0,﹣6), B(8,0)三点在⊙ P上, M为劣弧的 中点.
(1)求圆的半径及圆心 P的坐标;
(2)求证: AM是∠ OAB的平分线;
(3)连接 BM并延长交 y轴于点 N,求 N, M点的坐标.
如图,线段 AB是⊙ O的直径,弦 CD⊥ AB,∠ CAB=40°,则∠ ABD与∠ AOD分别等于( )
A. |
40°,80° |
B. |
50°,100° |
C. |
50°,80° |
D. |
40°,100° |
如图,在⊙O中,若点C是 的中点,∠A=50°,则∠BOC=( )
A.40°B.45°C.50°D.60°
我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点在以(南北方向)为直径的上,,交于点,垂足为,,弦、分别交于点、,且.
(1)比较 与 的大小;
(2)若,求证:;
(3)设直线、相交所成的锐角为,试确定时,点的位置.
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.
如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.
求证:(1)△ACO≌△BDO;(2)CE=DF.
如图,在 中, 是直径, 是弦, ,垂足为 ,连接 , , ,则下列说法中正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,已知⊙ O的半径为2, AB为直径, CD为弦. AB与 CD交于点 M,将 沿 CD翻折后,点 A与圆心 O重合,延长 OA至 P,使 AP= OA,连接 PC
(1)求 CD的长;
(2)求证: PC是⊙ O的切线;
(3)点 G为 的中点,在 PC延长线上有一动点 Q,连接 QG交 AB于点 E.交 于点 F( F与 B、 C不重合).问 GE• GF是否为定值?如果是,求出该定值;如果不是,请说明理由.
如图,以点 O为圆心的两个同心圆中,大圆的弦 AB是小圆的切线,点 P为切点, , OP=6,则劣弧 AB的长为 .
如图, 是 的外接圆,直线 与 相切于点 , ,连接 交 于点 .
(1)求证: 平分 ;
(2)若 的平分线 交 于点 ,且 , ,求 的长.