如图,⊙ O为等腰三角形 ABC的外接圆, AB是⊙ O的直径, AB=12, P为 上任意一点(不与点 B, C重合),直线 CP交 AB的延长线于点 Q,⊙ O在点 P处的切线 PD交 BQ于点 D,则下列结论:①若∠ PAB=30°,则 的长为π;②若 PD∥ BC,则 AP平分∠ CAB;③若 PB= BD,则 PD=6 ;④无论点 P在 上的位置如何变化, CP• CQ=108.其中正确结论的序号为 .
如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.
(1)求证:DF是⊙O的切线;
(2)求证:OC2=OE•OP;
(3)求线段EG的长.
如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.
(1)求⊙O的半径;
(2)点E为圆上一点,∠ECD=15°,将 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.
如图,在⊙ O中, OA⊥ BC,∠ AOB=48°, D为⊙ O上一点,则∠ ADC的度数是( )
A. |
24° |
B. |
42° |
C. |
48° |
D. |
12° |
如图, CD为⊙ O的直径,弦 AB⊥ CD,垂足为 M,若 AB=12, OM: MD=5:8,则⊙ O的周长为( )
A. |
26π |
B. |
13π |
C. |
|
D. |
|
如图,将半圆形纸片折叠,使折痕 CD与直径 AB平行, 的中点 P落在 OP上的点 P'处,且 OP'= OP,折痕 CD=2 ,则tan∠ COP的值为( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,已知⊙ O的直径为 AB, AC⊥ AB于点 A, BC与⊙ O相交于点 D,在 AC上取一点 E,使得 ED= EA.
(1)求证: ED是⊙ O的切线;
(2)当 OE=10时,求 BC的长.
如图,在平面直角坐标系中, O(0,0), A(0,﹣6), B(8,0)三点在⊙ P上, M为劣弧的 中点.
(1)求圆的半径及圆心 P的坐标;
(2)求证: AM是∠ OAB的平分线;
(3)连接 BM并延长交 y轴于点 N,求 N, M点的坐标.
如图,线段 AB是⊙ O的直径,弦 CD⊥ AB,∠ CAB=40°,则∠ ABD与∠ AOD分别等于( )
A. |
40°,80° |
B. |
50°,100° |
C. |
50°,80° |
D. |
40°,100° |
如图,在⊙O中,若点C是 的中点,∠A=50°,则∠BOC=( )
A.40°B.45°C.50°D.60°
我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点在以(南北方向)为直径的上,,交于点,垂足为,,弦、分别交于点、,且.
(1)比较 与 的大小;
(2)若,求证:;
(3)设直线、相交所成的锐角为,试确定时,点的位置.
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.