初中数学

如图,在 中, 是直径, 是弦, ,垂足为 ,连接 ,则下列说法中正确的是   

A.

B.

C.

D.

来源:2017年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,已知⊙ O的半径为2, AB为直径, CD为弦. ABCD交于点 M,将 CD ̂ 沿 CD翻折后,点 A与圆心 O重合,延长 OAP,使 APOA,连接 PC

(1)求 CD的长;

(2)求证: PC是⊙ O的切线;

(3)点 G ADB ̂ 的中点,在 PC延长线上有一动点 Q,连接 QGAB于点 E.交 BC ̂ 于点 FFBC不重合).问 GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

来源:2016年广东省深圳市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图,以点 O为圆心的两个同心圆中,大圆的弦 AB是小圆的切线,点 P为切点, AB = 12 3 OP=6,则劣弧 AB的长为   

来源:2016年广东省广州市中考数学试卷
  • 更新:2021-02-24
  • 题型:未知
  • 难度:未知

如图, O 的直径 AB 交弦(不是直径) CD 于点 P ,且 P C 2 = PB · PA ,求证: AB CD

来源:2020年内蒙古通辽市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆,直线 EG O 相切于点 E EG / / BC ,连接 AE BC 于点 D

(1)求证: AE 平分 BAC

(2)若 ABC 的平分线 BF AD 于点 F ,且 DE = 3 DF = 2 ,求 AF 的长.

来源:2020年内蒙古呼伦贝尔市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

已知 AB O 的直径且长为 2 r C O 上异于 A B 的点,若 AD 与过点 C O 的切线互相垂直,垂足为 D .①若等腰三角形 AOC 的顶角为120度,则 CD = 1 2 r ,②若 ΔAOC 为正三角形,则 CD = 3 2 r ,③若等腰三角形 AOC 的对称轴经过点 D ,则 CD = r ,④无论点 C 在何处,将 ΔADC 沿 AC 折叠,点 D 一定落在直径 AB 上,其中正确结论的序号为  

来源:2020年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图, BC O 的直径, AD O 的弦, AD BC 于点 E ,连接 AB CD ,过点 E EF AB ,垂足为 F AEF = D

(1)求证: AD BC

(2)点 G BC 的延长线上,连接 AG DAG = 2 D

①求证: AG O 相切;

②当 AF BF = 2 5 CE = 4 时,直接写出 CG 的长.

来源:2020年辽宁省盘锦市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

四边形 ABCD 内接于 O AB O 的直径, AD = CD

(1)如图1,求证 ABC = 2 ACD

(2)过点 D O 的切线,交 BC 延长线于点 P (如图 2 ) .若 tan CAB = 5 12 BC = 1 ,求 PD 的长.

来源:2020年辽宁省大连市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

已知的半径为,弦的长为,则圆心的距离为  

来源:2020年江苏省南通市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 P 在第一象限, P x 轴、 y 轴都相切,且经过矩形 AOBC 的顶点 C ,与 BC 相交于点 D .若 P 的半径为5,点 A 的坐标是 ( 0 , 8 ) .则点 D 的坐标是 (    )

A.

( 9 , 2 )

B.

( 9 , 3 )

C.

( 10 , 2 )

D.

( 10 , 3 )

来源:2020年江苏省南京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,的直径,上一点,与过点的直线互相垂直,垂足为平分

(1)求证:的切线.

(2)若,求的半径.

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

定义:对角线互相垂直且相等的四边形叫做垂等四边形.

(1)下面四边形是垂等四边形的是    ;(填序号)

①平行四边形;②矩形;③菱形;④正方形

(2)图形判定:如图1,在四边形 ABCD 中, AD / / BC AC BD ,过点 D BD 垂线交 BC 的延长线于点 E ,且 DBC = 45 ° ,证明:四边形 ABCD 是垂等四边形.

(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 ABCD 内接于 O 中, BCD = 60 ° .求 O 的半径.

来源:2020年湖南省怀化市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, AD / / BC AB = 2 3 a ABC = 60 ,过点 B O 与边 AB BC 分别交于 E F 两点. OG BC ,垂足为 G OG = a .连接 OB OE OF

(1)若 BF = 2 a ,试判断 ΔBOF 的形状,并说明理由;

(2)若 BE = BF ,求证: O AD 相切于点 A

来源:2020年湖北省宜昌市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, E C O 上两点,且 EC ̂ = BC ̂ ,连接 AE AC .过点 C CD AE AE 的延长线于点 D

(1)判定直线 CD O 的位置关系,并说明理由;

(2)若 AB = 4 CD = 3 ,求图中阴影部分的面积.

来源:2020年湖北省襄阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

中,若弦垂直平分半径,则弦所对的圆周角等于  

来源:2020年湖北省襄阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学垂径定理试题