初中数学

【提出问题】如图1,小东将一张AD为12,宽AB为4的长方形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P、Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置发生改变.

【规律探索】
(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.
求证:①ME=NF;②MN∥BC.
【解决问题】
(2)如图1,若BP=3,求线段MN的长;
(3)如图2,当点P与点Q重合时,求MN的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知,在矩形ABCD中,E为BC边上一点,AE⊥DE,AB=12,BE=16,F为线段BE上一点,EF=7,连接AF.如图①,现有一张硬质纸片△GMN,∠NGM=90°,NG=6,MG=8,斜边MN与边BC在同一直线上,点N与点E重合,点G在线段DE上.如图②,△GMN从图①的位置出发,以每秒1个单位的速度沿EB向点B匀速移动,同时,点P从A点出发,以每秒1个单位的速度沿AD向点D匀速移动,点Q为直线GN与线段AE的交点,连接PQ.当点N到达终点B时,△GMN和点P同时停止运动.设运动时间为t秒,解答下列问题:

(1)在整个运动过程中,当点G在线段AE上时,求t的值.
(2)在整个运动过程中,是否存在点P,使△APQ是等腰三角形.若存在,求出t的值;若不存在,说明理由.
(3)在整个运动过程中,设△GMN与△AEF重叠部分的面积为S,请直接写出S与t之间的函数关系式以及自变量t的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

课本再现

(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 A 相等的角是   

类比迁移

(2)如图2,在四边形 ABCD 中, ABC ADC 互余,小明发现四边形 ABCD 中这对互余的角可类比(1)中思路进行拼合:先作 CDF = ABC ,再过点 C CE DF 于点 E ,连接 AE ,发现 AD DE AE 之间的数量关系是   

方法运用

(3)如图3,在四边形 ABCD 中,连接 AC BAC = 90 ° ,点 O ΔACD 两边垂直平分线的交点,连接 OA OAC = ABC

①求证: ABC + ADC = 90 °

②连接 BD ,如图4,已知 AD = m DC = n AB AC = 2 ,求 BD 的长(用含 m n 的式子表示).

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,点 O 为以 AB 为直径的半圆的圆心,点 M N 在直径 AB 上,点 P Q AB ̂ 上,四边形 MNPQ 为正方形,点 C QP ̂ 上运动(点 C 与点 P Q 不重合),连接 BC 并延长交 MQ 的延长线于点 D ,连接 AC MQ 于点 E ,连接 OQ

(1)求 sin AOQ 的值;

(2)求 AM MN 的值;

(3)令 ME = x QD = y ,直径 AB = 2 R ( R > 0 R 是常数),求 y 关于 x 的函数解析式,并指明自变量 x 的取值范围.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=5,AC=9,SABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.

(1)求tanA的值;
(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;
(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1, O 为半圆的圆心, C D 为半圆上的两点,且 BD ̂ = CD ̂ .连接 AC 并延长,与 BD 的延长线相交于点 E

(1)求证: CD = ED

(2) AD OC BC 分别交于点 F H

①若 CF = CH ,如图2,求证: CF AF = FO AH

②若圆的半径为2, BD = 1 ,如图3,求 AC 的值.

来源:2021年山东省泰安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图1,矩形ABCD中,AB=2,BC=6,点P、Q分别是线段AD和线段BC上的动点,满足∠PQB=60°.
(1)填空:①∠ACB=        度;②PQ=        
(2)设线段BC的中点为N,PQ与线段AC相交于点M,若△CMN为直角三角形,请直接写出满足条件的AP的长度.
(3)设AP=x,△PBQ与△ABC的重叠部分的面积为S,试求S与x的函数关系式和自变量x的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图, BD 是半径为3的 O 的一条弦, BD = 4 2 ,点 A O 上的一个动点(不与点 B D 重合),以 A B D 为顶点作 ABCD

(1)如图2,若点 A 是劣弧 BD ^ 的中点.

①求证: ABCD 是菱形;

②求 ABCD 的面积.

(2)若点 A 运动到优弧 BD ̂ 上,且 ABCD 有一边与 O 相切.

①求 AB 的长;

②写出 ABCD 对角线所夹锐角的正切值.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

(本题14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点。
(1)若四边形OABC为矩形,如图1,
①求点B的坐标;
②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;
(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥轴,与对角线AC、边OC分别交于点E、点F。若B1E: B1F=1:3,点B1的横坐标为,求点B1的纵坐标,并直接写出的取值范围。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在几何体表面上,蚂蚁怎样爬行路径最短?

(1)如图①,圆锥的母线长为 12 cm B 为母线 OC 的中点,点 A 在底面圆周上, AC ̂ 的长为 4 πcm .在图②所示的圆锥的侧面展开图中画出蚂蚁从点 A 爬行到点 B 的最短路径,并标出它的长(结果保留根号).

(2)图③中的几何体由底面半径相同的圆锥和圆柱组成. O 是圆锥的顶点,点 A 在圆柱的底面圆周上,设圆锥的母线长为 l ,圆柱的高为 h

①蚂蚁从点 A 爬行到点 O 的最短路径的长为   l + h  (用含 l h 的代数式表示).

②设 AD ̂ 的长为 a ,点 B 在母线 OC 上, OB = b .圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点 A 爬行到点 B 的最短路径的示意图,并写出求最短路径的长的思路.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中, M 经过原点 O ,分别交 x 轴、 y 轴于点 A ( 2 , 0 ) B ( 0 , 8 ) ,连结 AB .直线 CM 分别交 M 于点 D E (点 D 在左侧),交 x 轴于点 C ( 17 , 0 ) ,连结 AE

(1)求 M 的半径和直线 CM 的函数表达式;

(2)求点 D E 的坐标;

(3)点 P 在线段 AC 上,连结 PE .当 AEP ΔOBD 的一个内角相等时,求所有满足条件的 OP 的长.

来源:2021年浙江省温州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

(本题8分)如图,在□ABCD中,的中点,的延长线分别交的延长线于

(1)求证:BH=AB;
(2)若四边形为菱形,试判断的大小,并证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 内接于 O BD 为直径, AD ̂ 上存在点 E ,满足 A E ^ = CD ^ ,连结 BE 并延长交 CD 的延长线于点 F BE AD 交于点 G

(1)若 DBC = α ,请用含 α 的代数式表示 AGB

(2)如图2,连结 CE CE = BG .求证: EF = DG

(3)如图3,在(2)的条件下,连结 CG AD = 2

①若 tan ADB = 3 2 ,求 ΔFGD 的周长.

②求 CG 的最小值.

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动.

(1) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一点,且 AE = 1 ,小亮以 BE 为边作等边三角形 BEF ,如图1.求 CF 的长;

(2) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一个动点,小亮以 BE 为边作等边三角形 BEF ,如图2.在点 E 从点 C 到点 A 的运动过程中,求点 F 所经过的路径长;

(3) ΔABC 是边长为3的等边三角形, M 是高 CD 上的一个动点,小亮以 BM 为边作等边三角形 BMN ,如图3.在点 M 从点 C 到点 D 的运动过程中,求点 N 所经过的路径长;

(4)正方形 ABCD 的边长为3, E 是边 CB 上的一个动点,在点 E 从点 C 到点 B 的运动过程中,小亮以 B 为顶点作正方形 BFGH ,其中点 F G 都在直线 AE 上,如图4.当点 E 到达点 B 时,点 F G H 与点 B 重合.则点 H 所经过的路径长为    ,点 G 所经过的路径长为   

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

(1)如图1,直线//////,且之间的距离均为1,之间的距离为2,现将正方形ABCD如图放置,使其四个顶点分别在四条直线上,求正方形的边长;
(2)在(1)的条件下,探究:将正方形ABCD改为菱形ABCD,如图2,当时,求菱形的边长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆解答题