如图,在长方形ABCD中,,AB=6cm,BC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在点E处,BE交AD于点F,
求证:△FBD是等腰三角形;
求AF长。
请阅读下列材料:
问题:如图①,将菱形ABCD和菱形BEFG拼接在一起,使得点A,B,E在同一条直线上,点G在BC边上,P是线段DF的中点,连接PG,PC.若∠ABC=120°,试探究PG与PC的位置关系及∠PCG的大小.小明同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小明的思路,探究并解决下列问题:
(1)直接写出上面问题中线段PG与PC的位置关系及∠PCG的大小;
(2)将图①中的菱形BEFG绕点B顺时针旋转,使点E恰好落在CB的延长线上,原问题中的其他条件不变(如图②).你在(1)中得到的两个结论是否仍成立?写出你的猜想并加以证明.
如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.
(1)求证:△DFA∽△ABE;
(2)试求y与x之间的函数关系式,并求出自变量的取值范围.
(本题满分10分)
如图,若∠AOB=∠ACB=90°,OC平分∠AOB.
你能将四边形AOBC通过剪裁拼成一个正方形吗?画出裁剪方法并有必要的说明。
②、若OC=2,你能求出四边形AOBC的面积吗?
如图,在梯形ABCD中,AD∥BC,AB=AD+BC,E为CD的中点.
求证:AE⊥BE.
如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于点E,DF⊥BC交BC的延长线于点F。请你猜想DE与DF的什么关系,证明你的猜想。
如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.
我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线, AF⊥BE , 垂足为P.像△ABC这样的三角形均为“中垂三角形”.设,,.
特例探索
(1)如图1,当∠=45°,时,= , ;
如图2,当∠=30°,时, = , ;
归纳证明
(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;
拓展应用
(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG, AD= ,AB=3.求AF的长.
如图,在直角梯形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:
(1)BC= cm;
(2)当t为多少时,四边形PQCD成为平行四边形?
(3)当t为多少时,四边形PQCD为等腰梯形?
(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.
已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交CD、AB于E、F,求证:AE=CF.
△ABC中,AB=AC=10,BC=12,矩形DEFG中,EF=4,FG>12.
(1)如图①,点A是FG的中点,FG∥BC,将矩形DEFG向下平移,直到DE与BC重合为止.要研究矩形DEFG与△ABC重叠部分的面积,就要进行分类讨论,你认为如何进行分类,写出你的分类方法(无需求重叠部分的面积).
(2)如图②,点B与F重合,E、B.C在同一直线上,将矩形DEFG向右平移,直到点E与C重合为止.设矩形DEFG与△ABC重叠部分的面积为y,平移的距离为x.
①求y与x的函数关系式,并写出自变量的取值范围;
②在给定的平面直角坐标系中画出y与x的大致图象,并在图象上标注出关键点坐标.
如图1,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,连接AE. AC和BE相交于点O.