初中数学

如图,矩形 EFGH 的四个顶点分别在矩形 ABCD 的各条边上, AB = EF FG = 2 GC = 3 .有以下四个结论:① BGF = CHG ;② ΔBFG ΔDHE ;③ tan BFG = 1 2 ;④矩形 EFGH 的面积是 4 3 .其中一定成立的是  .(把所有正确结论的序号填在横线上)

来源:2018年山东省济南市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DF / / BC ABC 的平分线 BE DF 于点 G GH DF ,点 E 恰好为 DH 的中点,若 AE = 3 CD = 2 ,则 GH = (    )

A.1B.2C.3D.4

来源:2020年四川省绵阳市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 90 ° AB = AC = 5 ,点 D AC 上,且 AD = 2 ,点 E AB 上的动点,连结 DE ,点 F G 分别是 BC DE 的中点,连结 AG FG ,当 AG = FG 时,线段 DE 长为 (    )

A.

13

B.

5 2 2

C.

41 2

D.

4

来源:2021年浙江省嘉兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° ,且 BA = 3 AC = 4 ,点 D 是斜边 BC 上的一个动点,过点 D 分别作 DM AB 于点 M DN AC 于点 N ,连接 MN ,则线段 MN 的最小值为  

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,点 E F G 分别在菱形 ABCD 的边 AB BC AD 上, AE = 1 3 AB CF = 1 3 CB AG = 1 3 AD .已知 ΔEFG 的面积等于6,则菱形 ABCD 的面积等于  

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点, AD 和过点 C 的切线互相垂直,垂足为 D ,且交 O 于点 E .连接 OC BE ,相交于点 F

(1)求证: EF = BF

(2)若 DC = 4 DE = 2 ,求直径 AB 的长.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

再读教材:

宽与长的比是 5 1 2 (约为 0 . 618 ) 的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑,为取得最佳的视觉效果,都采用了黄金矩形的设计,下面,我们用宽为2的矩形纸片折叠黄金矩形.(提示: MN = 2 )

第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平.

第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.

第三步,折出内侧矩形的对角线 AB ,并把 AB 折到图③中所示的 AD 处.

第四步,展平纸片,按照所得的点 D 折出 DE ,使 DE ND ,则图④中就会出现黄金矩形.

问题解决:

(1)图③中 AB =   (保留根号);

(2)如图③,判断四边形 BADQ 的形状,并说明理由;

(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.

实际操作

(4)结合图④,请在矩形 BCDE 中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, BE / / DF 且分别交对角线 AC 于点 E F

(1)求证: ΔABE ΔCDF

(2)当四边形 ABCD 分别是矩形和菱形时,请分别说出四边形 BEDF 的形状.(无需说明理由)

来源:2021年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 5 BC = 4 ,以 CD 为直径作 O .将矩形 ABCD 绕点 C

旋转,使所得矩形 A ' B ' CD ' 的边 A ' B ' O 相切,切点为 E ,边 CD ' O 相交于点

F ,则 CF 的长为  

来源:2018年江苏省南京市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AD = 12 ,以 AD 为直径的 O BC 相切于点 E ,连接 OC .若 OC = AB ,则 ABCD 的周长为   

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

问题情境:

在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到 ΔABC ΔACD .并且量得 AB = 2 cm AC = 4 cm

操作发现:

(1)将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转 α ,使 α = BAC ,得到如图2所示的△ AC ' D ,过点 C AC ' 的平行线,与 D C ' 的延长线交于点 E ,则四边形 ACEC ' 的形状是  

(2)创新小组将图1中的 ΔACD 以点 A 为旋转中心,按逆时针方向旋转,使 B A D 三点在同一条直线上,得到如图3所示的△ AC ' D ,连接 C C ' ,取 CC ' 的中点 F ,连接 AF 并延长至点 G ,使 FG = AF ,连接 CG C ' G ,得到四边形 ACGC ' ,发现它是正方形,请你证明这个结论.

实践探究:

(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 ΔABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A ' 点, A ' C BC ' 相交于点 H ,如图4所示,连接 CC ' ,试求 tan C ' CH 的值.

来源:2018年山东省菏泽市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 G 在对角线 BD 上(不与点 B D 重合), GE DC 于点 E GF BC 于点 F ,连接 AG

(1)写出线段 AG GE GF 长度之间的数量关系,并说明理由;

(2)若正方形 ABCD 的边长为1, AGF = 105 ° ,求线段 BG 的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ABCD 的对角线 AC BD 相交于点 O ΔOAB 是等边三角形, AB = 4

(1)求证: ABCD 是矩形;

(2)求 AD 的长.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,点 P 在矩形 ABCD 的对角线 AC 上,且不与点 A C 重合,过点 P 分别作边 AB AD 的平行线,交两组对边于点 E F G H

(1)求证: ΔPHC ΔCFP

(2)证明四边形 PEDH 和四边形 PFBG 都是矩形,并直接写出它们面积之间的关系.

来源:2016年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学矩形的判定与性质试题