如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.
(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形, 经过点 ,连接 交 于点 ,观察发现:点 是 的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接 交 于点 .
请参考上面的思路,证明点 是 的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当 时,延长 、 交于点 ,求 的值;
(3)在(2)的条件下,若 为大于 的常数),直接用含 的代数式表示 的值.
如图,菱形 的顶点 、 在 轴上 在 的左侧),顶点 、 在 轴上方,对角线 的长是 ,点 为 的中点,点 在菱形 的边上运动.当点 到 所在直线的距离取得最大值时,点 恰好落在 的中点处,则菱形 的边长等于
A. B. C. D.3
下列结论中,矩形具有而菱形不一定具有的性质是
A.内角和为 B.对角线互相平分
C.对角线相等D.对角线互相垂直
如图,已知 , 为线段 上的一个动点,分别以 , 为边在 的同侧作菱形 和菱形 ,点 , , 在一条直线上, . , 分别是对角线 , 的中点.当点 在线段 上移动时,点 , 之间的距离最短为 (结果留根号).
如图,在平面直角坐标系 中,菱形 的顶点 与原点 重合,顶点 落在 轴的正半轴上,对角线 、 交于点 ,点 、 恰好都在反比例函数 的图象上,则 的值为
A. B. C.2D.
如图,在平面直角坐标系中,菱形 的边 与 轴平行, , 两点纵坐标分别为4,2,反比例函数 经过 , 两点,若菱形 面积为8,则 值为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在菱形 中,对角线 , ,分别以点 , , , 为圆心, 的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为 .(结果保留
如图.将菱形 绕点 逆时针旋转 得到菱形 , .当 平分 时, 与 满足的数量关系是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在菱形 中, ,点 , 分别在边 , 上, , 的周长为 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在直角坐标系中,菱形 的顶点 , , 在坐标轴上,若点 的坐标为 , ,则点 的坐标为
A. |
|
B. |
, |
C. |
|
D. |
|
如图,在菱形 中, , ,点 在边 上,且 .若直线 经过点 ,将该菱形的面积平分,并与菱形的另一边交于点 ,则线段 的长为 .