初中数学

如图,在等边 ΔABC 中, AB = 6 ,点 D E 分别在边 BC AC 上,且 BD = CE ,连接 AD BE 交于点 F ,连接 CF ,则 CF 的最小值是   

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,以 AB 为边,在 AB 的同侧分别作正五边形 ABCDE 和等边 ΔABF ,连接 FE FC ,则 EFA 的度数是  

来源:2020年辽宁省铁岭市、葫芦岛市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图, ΔABC 为等边三角形,边长为6, AD BC ,垂足为点 D ,点 E 和点 F 分别是线段 AD AB 上的两个动点,连接 CE EF ,则 CE + EF 的最小值为    

来源:2020年辽宁省营口市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

如图,直线 a b 过等边三角形 ABC 顶点 A C ,且 a / / b 1 = 42 ° ,则 2 的度数为   

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 A 1 A 2 A 3 A 4 x 轴正半轴上,点 B 1 B 2 B 3 在直线 y = 3 3 x ( x 0 ) 上,若 A 1 ( 1 , 0 ) ,且△ A 1 B 1 A 2 ,△ A 2 B 2 A 3 ,△ A 3 B 3 A 4 均为等边三角形,则线段 B 2019 B 2020 的长度为 (    )

A.

2 2021 3

B.

2 2020 3

C.

2 2019 3

D.

2 2018 3

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等边三角形, AB = 4 cm ,动点 P 从点 A 出发,以 2 cm / s 的速度沿 AB 向点 B 匀速运动,过点 P PQ AB ,交折线 AC - CB 于点 Q ,以 PQ 为边作等边三角形 PQD ,使点 A D PQ 异侧.设点 P 的运动时间为 x ( s ) ( 0 < x < 2 ) ΔPQD ΔABC 重叠部分图形的面积为 y ( c m 2 )

(1) AP 的长为     cm (用含 x 的代数式表示).

(2)当点 D 落在边 BC 上时,求 x 的值.

(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为6, M AB 的中点, ΔMBE 为等边三角形,过点 E ME 的垂线分别与边 AD BC 相交于点 F G ,点 P Q 分别在线段 EF BC 上运动,且满足 PMQ = 60 ° ,连接 PQ

(1)求证: ΔMEP ΔMBQ

(2)当点 Q 在线段 GC 上时,试判断 PF + GQ 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.

(3)设 QMB = α ,点 B 关于 QM 的对称点为 B ' ,若点 B ' 落在 ΔMPQ 的内部,试写出 α 的范围,并说明理由.

来源:2020年江苏省泰州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,在中,的垂直平分线分别交于点.若是等边三角形,则   

来源:2020年江苏省常州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E DC 上的一点, ΔABE 是等边三角形, AC BE 于点 F ,则下列结论不成立的是 (    )

A.

DAE = 30 °

B.

BAC = 45 °

C.

EF FB = 1 2

D.

AD AB = 3 2

来源:2020年湖南省益阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,在一个池塘两旁有一条笔直小路为小路端点)和一棵小树为小树位置).测得的相关数据为:米,则  米.

来源:2020年湖北省宜昌市中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,是等边三角形外一点.若,连接,则的最大值与最小值的差为  

来源:2020年湖北省十堰市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + 9 4 x + c 经过点 A ( - 1 , 0 ) 和点 C ( 0 , 3 ) x 轴的另一交点为点 B ,点 M 是直线 BC 上一动点,过点 M MP / / y 轴,交抛物线于点 P

(1)求该抛物线的解析式;

(2)在抛物线上是否存在一点 Q ,使得 ΔQCO 是等边三角形?若存在,求出点 Q 的坐标;若不存在,请说明理由;

(3)以 M 为圆心, MP 为半径作 M ,当 M 与坐标轴相切时,求出 M 的半径.

来源:2020年贵州省遵义市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

已知等边三角形一边上的高为 2 3 ,则它的边长为 (    )

A.

2

B.

3

C.

4

D.

4 3

来源:2020年贵州省铜仁市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图1,都是等边三角形.

探究发现

(1)是否全等?若全等,加以证明;若不全等,请说明理由.

拓展运用

(2)若三点不在一条直线上,,求的长.

(3)若三点在一条直线上(如图,且的边长分别为1和2,求的面积及的长.

来源:2020年贵州省黔东南州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图,的内接正三角形,点是圆心,点分别在边上,若,则的度数是   度.

来源:2020年贵州省贵阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

初中数学等边三角形的性质试题