如图,正方形 边长是 ,点 从点 出发,沿 的路径运动,到 点停止运动,点 从点 出发,在 延长线上向右运动,点 与点 同时出发,点 停止运动时,点 也停止运动,点 ,点 的运动速度都是 ,下列函数图象中能反映 的面积 与运动时间 的函数关系的是
A.B.
C.D.
如图, CB= CA,∠ ACB=90°,点 D在边 BC上(与 B、 C不重合),四边形 ADEF为正方形,过点 F作 FG⊥ CA,交 CA的延长线于点 G,连接 FB,交 DE于点 Q,给出以下结论:
① AC= FG;② S △ FAB: S 四边形 CBFG=1:2;③∠ ABC=∠ ABF;④ AD 2= FQ• AC,
其中正确的结论的个数是( )
A. |
1 |
B. |
2 |
C. |
3 |
D. |
4 |
如图,正方形 的顶点 、 的坐标分别为 , ,则点 关于原点 的对称点的坐标为
A. |
|
B. |
|
C. |
|
D. |
|
如图,直线 ,一等腰直角三角形 的三个顶点 , , 分别在 , , 上, , 交 于点 ,已知 与 的距离为1, 与 的距离为3,则 的值为
A. B. C. D.
如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D、E为BC边上的两点,且∠DAE=45°,连接EF、BF,则下列结论:①△AED≌△AEF ②△ABE∽△ACD,③BE+DC>DE④BE2+DC2=DE2,其中正确的有( )个
A.1 B.2 C.3 D.4
如图,在 中, , 于点 , 为 的中点,连接 、 ,下列结论:① ;② ;③ ;④ ,其中正确结论的个数共有
A.1个B.2个C.3个D.4个
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,小明在探究筝形的性质时,得到如下结论:
①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有( )
A.①② | B.①③ | C.②③ | D.①②③ |
如图,在 中, , 的垂直平分线交 于点 ,交 于点 , 的垂直平分线交 于点 ,交 于点 ,连接 , ,则下列结论错误的是
A. B. , 将 三等分
C. D.
如图,在正方形 中, , 是 边上的一点, 。将 沿 对折至 ,连接 ,则 的长是
A. |
|
B. |
|
C. |
3 |
D. |
|
如图,点 是 对角线的交点, 过点 分别交 , 于点 , ,下列结论成立的是
A. |
|
B. |
|
C. |
|
D. |
|
如图直角梯形 中, , , , ,将腰 以 为中心逆时针旋转 至 ,连 、 ,则 的面积是
A.1B.2C.3D.不能确定
已知 ,求作 ,作法:
(1)以 为圆心,任意长为半径画弧分别交 , 于点 , ;
(2)分别以 , 为圆心,以 长为半径在角的内部画弧交于点 ;
(3)作射线 ,则 为 的平分线,可得
根据以上作法,某同学有以下3种证明思路:
①可证明 ,得 ,可得;
②可证明四边形 为菱形, , 互相垂直平分,得 ,可得;
③可证明 为等边三角形, , 互相垂直平分,从而得 ,可得.
你认为该同学以上3种证明思路中,正确的有
A.①②B.①③C.②③D.①②③
在四边形 中, , , , ,分别以 , 为圆心,大于 的长为半径作弧,两弧交于点 ,作射线 交 于点 ,交 于点 ,若点 是 的中点,则 的长为
A. |
|
B. |
|
C. |
6 |
D. |
8 |