中, , , ,过点 的直线把 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 .
将在同一平面内如图放置的两块三角板绕公共顶点 旋转,连接 , .探究 与 的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图①
(2)一块是等腰直角三角板,另一块是含有 角的直角三角板时, 是否为定值?如果是,求出此定值,如果不是,说明理由.(图②
(3)两块三角板中, , , , , , , , 为常数), 是否为定值?如果是,用含 , , , 的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③
如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交 , 于点 , ,再分别以点 , 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交 于点 .若 , ,则 的面积是 .
在边长为4的等边三角形 中, 为 边上的任意一点,过点 分别作 , ,垂足分别为 , ,则 .
如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交 , 于点 , ,再分别以点 , 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是
A.15B.30C.45D.60
如图,过点 的直线 与反比例函数 的图象交于 , 两点, ,直线 轴,与反比例函数 的图象交于点 ,连接 ,则 的面积为 .
某景区修建一栋复古建筑,其窗户设计如图所示.圆 的圆心与矩形 对角线的交点重合,且圆与矩形上下两边相切 为上切点),与左右两边相交 , 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为 ,根据设计要求,若 ,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为 .
如图,在 中, , , .将 绕点 按逆时针方向旋转 得到△ ,连接 ,则△ 的面积为 .
如图,面积为1的等腰直角△ , ,且 为斜边在△ ,外作等腰直角△ ,以 为斜边在△ ,外作等腰直角△ ,以 为斜边在△ ,外作等腰直角△ , 连接 , , , 分别与 , , , 交于点 , , , 按此规律继续下去,记△ 的面积为 ,△ 的面积为 ,△ 的面积为 , △ 的面积为 ,则 (用含正整数 的式子表示).
如图, 的面积为 .点 , , , , 是边 的 等分点 ,且 为整数),点 , 分别在边 , 上,且 ,连接 , , , , ,连接 , , , , ,线段 与 相交于点 ,线段 与 相交于点 ,线段 与 相交于点 , ,线段 与 相交于点 ,则△ ,△ ,△ , ,△ 的面积和是 .(用含有 与 的式子表示)
如图, 的面积为16,点 是 边上一点,且 ,点 是 上一点,点 在 内部,且四边形 是平行四边形,则图中阴影部分的面积是
A.3B.4C.5D.6
如图, 的面积为6, ,现将 沿 所在直线翻折,使点 落在直线 上的 处, 为直线 上的一点,则线段 的长不可能是
A.3B.4C.5.5D.10
如图, 和 都是等腰直角三角形, ,反比例函数 在第一象限的图象经过点 ,则 与 的面积之差 为
A.36B.12C.6D.3