初中数学

(回顾)

如图1, ΔABC 中, B = 30 ° AB = 3 BC = 4 ,则 ΔABC 的面积等于      

(探究)

图2是同学们熟悉的一副三角尺,一个含有 30 ° 的角,较短的直角边长为 a ;另一个含有 45 ° 的角,直角边长为 b ,小明用两副这样的三角尺拼成一个平行四边形 ABCD (如图 3 ) ,用了两种不同的方法计算它的面积,从而推出 sin 75 ° = 6 + 2 4 ,小丽用两副这样的三角尺拼成了一个矩形 EFGH (如图 4 ) ,也推出 sin 75 ° = 6 + 2 4 ,请你写出小明或小丽推出 sin 75 ° = 6 + 2 4 的具体说理过程.

(应用)

在四边形 ABCD 中, AD / / BC D = 75 ° BC = 6 CD = 5 AD = 10 (如图5)

(1)点 E AD 上,设 t = BE + CE ,求 t 2 的最小值;

(2)点 F AB 上,将 ΔBCF 沿 CF 翻折,点 B 落在 AD 上的点 G 处,点 G AD 的中点吗?说明理由.

来源:2017年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

操作:“如图1, P 是平面直角坐标系中一点 ( x 轴上的点除外),过点 P PC x 轴于点 C ,点 C 绕点 P 逆时针旋转 60 ° 得到点 Q .”我们将此由点 P 得到点 Q 的操作称为点的 T 变换.

(1)点 P ( a , b ) 经过 T 变换后得到的点 Q 的坐标为   ;若点 M 经过 T 变换后得到点 N ( 6 , - 3 ) ,则点 M 的坐标为       

(2) A 是函数 y = 3 2 x 图象上异于原点 O 的任意一点,经过 T 变换后得到点 B

①求经过点 O ,点 B 的直线的函数表达式;

②如图2,直线 AB y 轴于点 D ,求 ΔOAB 的面积与 ΔOAD 的面积之比.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,过点 A ( - 2 , 0 ) 的直线交 y 轴正半轴于点 B ,将直线 AB 绕着点 O 顺时针旋转 90 ° 后,分别与 x 轴、 y 轴交于点 D C

(1)若 OB = 4 ,求直线 AB 的函数关系式;

(2)连接 BD ,若 ΔABD 的面积是5,求点 B 的运动路径长.

来源:2017年江苏省连云港市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学三角形的面积计算题