下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个一边长为 ,面积为6的等腰三角形.
如图,已知 中, ,点 从点 出发沿 方向以 的速度匀速运动,到达点 停止运动,在点 的运动过程中,过点 作直线 交 于点 ,且保持 ,再过点 作 的垂线交 于点 ,连接 .将 关于直线 对称后得到 ,已知 , ,设点 运动时间为 , 与 重叠部分的面积为 .
(1)在点 的运动过程中,能否使得四边形 为正方形?如果能,求出相应的 值;如果不能,说明理由;
(2)求 关于 的函数解析式及相应 的取值范围;
(3)当 取最大值时,求 的值.
已知三角形的三边长分别为 、 、 ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦 ,约公元50年)给出求其面积的海伦公式 ,其中 ;我国南宋时期数学家秦九韶(约 曾提出利用三角形的三边求其面积的秦九韶公式 ,若一个三角形的三边长分别为2,3,4,则其面积是
A. B. C. D.
我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为 , , ,则该三角形的面积为 .现已知 的三边长分别为1,2, ,则 的面积为 .
点 、 、 在格点图中的位置如图所示,格点小正方形的边长为1,则点 到线段 所在直线的距离是 .
如图,在 中,点 是边 的中点,连结 并延长到点 ,使 ,连结 .
(1)求证: ;
(2)若 的面积为5,求 的面积.
如图, 轴于点 ,点 在 轴的正半轴上, , , ,点 为 与反比例函数 的图象的交点 . 若直线 将 的面积分成 的两部分, 则 的值为 .
如图, 中, , , 绕点 逆时针旋转 得到△ , 与 , 分别交于点 , .设 , 的面积为 ,则 与 的函数图象大致
A.
B.
C.
D.
如图, 的半径 垂直于弦 ,垂足为点 ,连接 并延长交 于点 ,连接 , .若 , ,则 的面积为
A.12B.15C.16D.18
如图, 中, , .将 绕点 逆时针方向旋转得到△ .此时恰好点 在 上, 交 于点 ,则 与 的面积之比为
A. B. C. D.
如图,平行四边形 的对角线 、 相交于点 , 平分 ,分别交 、 于点 、 ,连接 , , ,则下列结论:
① ② ③ ④ ⑤ ,正确的个数是
A.2B.3C.4D.5
如图,四边形 中, , , ,则四边形 的面积为
A.15B.12.5C.14.5D.17