已知三角形的三边长分别为 a 、 b 、 c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦 ( Heron ,约公元50年)给出求其面积的海伦公式 S = p ( p − a ) ( p − b ) ( p − c ) ,其中 p = a + b + c 2 ;我国南宋时期数学家秦九韶(约 1202 − 1261 ) 曾提出利用三角形的三边求其面积的秦九韶公式 S = 1 2 a 2 b 2 − ( a 2 + b 2 − c 2 2 ) 2 ,若一个三角形的三边长分别为2,3,4,则其面积是 ( )
A. 3 15 8 B. 3 15 4 C. 3 15 2 D. 15 2
(2014年湖北襄阳3分)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()
(2014年黑龙江龙东地区3分)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()
(2014年黑龙江绥化3分)如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论: ①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF, 其中正确的有()
(2014年黑龙江齐齐哈尔、大兴安岭地区、黑河3分)如图,四边形ABCD是矩形,AB=6cm,BC=8cm,把矩形沿直线BD折叠,点C落在点E处,BE与AD相交于点F,连接AE,下列结论: ①△FED是等腰三角形;②四边形ABDE是等腰梯形;③图中共有6对全等三角形;④四边形BCDF的周长为cm;⑤AE的长为cm. 其中结论正确的个数为()
(2014年黑龙江牡丹江3分)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论: ①FB⊥OC,OM=CM; ②△EOB≌△CMB; ③四边形EBFD是菱形; ④MB:OE=3:2. 其中正确结论的个数是()