已知三角形的三边长分别为 、 、 ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦 ,约公元50年)给出求其面积的海伦公式 ,其中 ;我国南宋时期数学家秦九韶(约 曾提出利用三角形的三边求其面积的秦九韶公式 ,若一个三角形的三边长分别为2,3,4,则其面积是
A. B. C. D.
我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为 , , ,则该三角形的面积为 .现已知 的三边长分别为1,2, ,则 的面积为 .
如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是 和2,则图中阴影部分的面积是 .
我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为 , , ,则该三角形的面积为 .现已知 的三边长分别为1,2, ,则 的面积为 .
公元3世纪,我国古代数学家刘徽就能利用近似公式
得到
的近似值.他的算法是:先将看出
:由近似公式得到
;再将
看成
,由近似值公式得到
;
依此算法,所得
的近似值会越来越精确.当
取得近似值
时,近似公式中的
是 ,
是 .
已知任意三角形的三边长,如何求三角形面积?
古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式 (其中a,b,c是三角形的三边长, ,S为三角形的面积),并给出了证明
例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:
∵a=3,b=4,c=5
∴
∴
事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.
根据上述材料,解答下列问题:
如图,在△ABC中,BC=5,AC=6,AB=9
(1)用海伦公式求△ABC的面积;
(2)求△ABC的内切圆半径r.