初中数学

(1)探索发现

如图1,在中,点在边上,的面积分别记为,试判断的数量关系,并说明理由.

(2)阅读解析

小东遇到这样一个问题:如图2,在中,,射线于点,点上,且,试判断三条线段之间的数量关系.

小东利用一对全等三角形,经过推理使问题得以解决.

填空:①图2中的一对全等三角形为   

三条线段之间的数量关系为  

(3)类比探究

如图3,在四边形中,交于点,点在射线上,且

①判断三条线段之间的数量关系,并说明理由;

②若的面积为2,直接写出四边形的面积.

来源:2015年河南省中考数学试卷(备用卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E F 分别在 BC CD 上, AE = AF AC EF 相交于点 G .下列结论:① AC 垂直平分 EF ;② BE + DF = EF ;③当 DAF = 15 ° 时, ΔAEF 为等边三角形;④当 EAF = 60 ° 时, S ΔABE = 1 2 S ΔCEF .其中正确的是 (    )

A.①③B.②④C.①③④D.②③④

来源:2018年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图,已知,通过测量、计算得的面积约为  .(结果保留一位小数)

来源:2019年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

A B C 在格点图中的位置如图所示,格点小正方形的边长为1,则点 C 到线段 AB 所在直线的距离是  

来源:2017年四川省乐山市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图所示的网格是正方形网格,是网格线交点,则的面积与的面积的大小关系为:  (填“”,“ ”或“

来源:2020年北京市中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

如图,点 M 在函数 y = 3 x ( x > 0 ) 的图象上,过点 M 分别作 x 轴和 y 轴的平行线交函数 y = 1 x ( x > 0 ) 的图象于点 B C

(1)若点 M 的坐标为 ( 1 , 3 )

①求 B C 两点的坐标;

②求直线 BC 的解析式;

(2)求 ΔBMC 的面积.

来源:2018年湖南省湘潭市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图是一个等边三角形木框,甲虫在边框上爬行(端点除外),设甲虫到另外两边的距离之和为,等边三角形的高为,则的大小关系是(  )

A. B. C. D.无法确定
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, A = 90 ° D AB 的中点,过点 D BC 的平行线交 AC 于点 E ,作 BC 的垂线交 BC 于点 F ,若 AB = CE ,且 ΔDFE 的面积为1,则 BC 的长为 (    )

A. 2 5 B.5C. 4 5 D.10

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图所示,已知在梯形 ABCD 中, AD / / BC S ΔABD S ΔBCD = 1 2 ,则 S ΔBOC S ΔBCD =   

来源:2021年上海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, ABC = 90 ° AB = 2 AC = 4 ,点 O BC 的中点,以 O 为圆心,以 OB 为半径作半圆,交 AC 于点 D ,则图中阴影部分的面积是   

来源:2021年山东省济宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC ,垂足为 D BD = CD ,延长 BC E ,使得 CE = CA ,连接 AE

(1)求证: B = ACB

(2)若 AB = 5 AD = 4 ,求 ΔABE 的周长和面积.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为  

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为 a b c ,则该三角形的面积为 S = 1 4 [ a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ] .现已知 ΔABC 的三边长分别为1,2, 5 ,则 ΔABC 的面积为  

来源:2018年山东省枣庄市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图, A 1 A 2 A 3 A n A n + 1 是直线 l 1 : y = 3 x 上的点,且 O A 1 = A 1 A 2 = A 2 A 3 = A n A n + 1 = 2 ,分别过点 A 1 A 2 A 3 A n A n + 1 l 1 的垂线与直线 l 2 : y = 3 3 x 相交于点 B 1 B 2 B 3 B n B n + 1 ,连接 A 1 B 2 B 1 A 2 A 2 B 3 B 2 A 3 A n B n + 1 B n A n + 1 ,交点依次为 P 1 P 2 P 3 P n ,设△ P 1 A 1 A 2 ,△ P 2 A 2 A 3 ,△ P 3 A 3 A 4 ,△ P n A n A n + 1 的面积分别为 S 1 S 2 S 3 S n ,则 S n =   .(用含有正整数 n 的式子表示)

来源:2018年辽宁省本溪市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

图①、图②、图③均是的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法.

(1)在图①中以线段为边画一个,使其面积为6.

(2)在图②中以线段为边画一个,使其面积为6.

(3)在图③中以线段为边画一个四边形,使其面积为9,且

来源:2019年吉林省长春市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

初中数学三角形的面积试题