初中数学

如图,在 ΔABC 中, A = 90 ° D AB 的中点,过点 D BC 的平行线交 AC 于点 E ,作 BC 的垂线交 BC 于点 F ,若 AB = CE ,且 ΔDFE 的面积为1,则 BC 的长为 (    )

A. 2 5 B.5C. 4 5 D.10

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的对角线 AC 的中点与坐标原点重合,点 E x 轴上一点,连接 AE .若 AD 平分 OAE ,反比例函数 y = k x ( k > 0 , x > 0 ) 的图象经过 AE 上的两点 A F ,且 AF = EF ΔABE 的面积为18,则 k 的值为 (    )

A.6B.12C.18D.24

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,三角形纸片 ABC ,点 D BC 边上一点,连接 AD ,把 ΔABD 沿着 AD 翻折,得到 ΔAED DE AC 交于点 G ,连接 BE AD 于点 F .若 DG = GE AF = 3 BF = 2 ΔADG 的面积为2,则点 F BC 的距离为 (    )

A. 5 5 B. 2 5 5 C. 4 5 5 D. 4 3 3

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 3 × 3 的网格中,每个小正方形的边长均为1,点 A B C 都在格点上,若 BD ΔABC 的高,则 BD 的长为 (    )

A. 10 13 13 B. 9 13 13 C. 8 13 13 D. 7 13 13

来源:2020年陕西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC CG BA BA 的延长线于点 G

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 F ,一条直角边与 AC 重合,另一条直角边恰好经过点 B .通过观察、测量 BF CG 的长度,得到 BF = CG .请给予证明.

猜想论证:

(2)当三角尺沿 AC 方向移动到图2所示的位置时,一条直角边仍与 AC 边重合,另一条直角边交 BC 于点 D ,过点 D DE BA 垂足为 E .此时请你通过观察、测量 DE DF CG 的长度,猜想并写出 DE DF CG 之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿 AC 方向继续移动到图3所示的位置(点 F 在线段 AC 上,且点 F 与点 C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH AD ,垂足为 H ,连接 AF

(1)求证: FH = ED

(2)当 AE 为何值时, ΔAEF 的面积最大?

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,平面直角坐标系中,已知点 B 的坐标为 ( 6 , 4 )

(1)请用直尺(不带刻度)和圆规作一条直线 AC ,它与 x 轴和 y 轴的正半轴分别交于点 A 和点 C ,且使 ABC = 90 ° ΔABC ΔAOC 的面积相等.(作图不必写作法,但要保留作图痕迹. )

(2)问:(1)中这样的直线 AC 是否唯一?若唯一,请说明理由;若不唯一,请在图中画出所有这样的直线 AC ,并写出与之对应的函数表达式.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知 ΔABC 中, AB = 10 AC = 2 7 B = 30 ° ,则 ΔABC 的面积等于  

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, AB = 3 ,点 E F 分别在 CD AD 上, CE = DF BE CF 相交于点 G .若图中阴影部分的面积与正方形 ABCD 的面积之比为 2 : 3 ,则 ΔBCG 的周长为  

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 6 × 6 的网格中,每个小正方形的边长为1,点 A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 15 AC = 20 ,点 D 在边 AC 上, AD = 5 DE BC 于点 E ,连接 AE ,则 ΔABE 的面积等于  

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,点 A B 在反比例函数 y = k x ( k > 0 ) 的图象上, AC x 轴, BD x 轴,垂足 C D 分别在 x 轴的正、负半轴上, CD = k ,已知 AB = 2 AC E AB 的中点,且 ΔBCE 的面积是 ΔADE 的面积的2倍,则 k 的值是  

来源:2016年浙江省温州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:

(1)画一个直角边长为4,面积为6的直角三角形.

(2)画一个底边长为4,面积为8的等腰三角形.

(3)画一个面积为5的等腰直角三角形.

(4)画一个一边长为 2 2 ,面积为6的等腰三角形.

来源:2018年四川省广安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 中, A = C = 90 ° B = 60 ° AD = 1 BC = 2 ,则四边形 ABCD 的面积是 (    )

A. 3 3 2 B.3C. 2 3 D.4

来源:2017年四川省雅安市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

已知三角形的三边长分别为 a b c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦 ( Heron ,约公元50年)给出求其面积的海伦公式 S = p ( p a ) ( p b ) ( p c ) ,其中 p = a + b + c 2 ;我国南宋时期数学家秦九韶(约 1202 1261 ) 曾提出利用三角形的三边求其面积的秦九韶公式 S = 1 2 a 2 b 2 ( a 2 + b 2 c 2 2 ) 2 ,若一个三角形的三边长分别为2,3,4,则其面积是 (    )

A. 3 15 8 B. 3 15 4 C. 3 15 2 D. 15 2

来源:2017年四川省泸州市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

初中数学三角形的面积试题