如图,已知正方形 的边长为5,点 、 分别在 、 上, , 与 相交于点 ,点 为 的中点,连接 ,则 的长为 .
如图,在△ABC中, ,M、N分别是AB、AC的中点,延长BC至点D,使 ,连接DM、DN、MN.若AB=6,则DN= .
如图是一张矩形纸片,点 在 边上,把 沿直线 对折,使点 落在对角线 上的点 处,连接 .若点 , , 在同一条直线上, ,则 , .
如图,若 内一点 满足 ,则称点 为 的布罗卡尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知 中, , , 为 的布罗卡尔点,若 ,则 .
如图,在矩形 中, , ,点 为线段 上的动点,将 沿 折叠,使点 落在矩形内点 处,下列结论正确的是 (写出所有正确结论的序号)
①当 为线段 中点时, ;
②当 为线段 中点时, ;
③当 、 、 三点共线时, ;
④当 、 、 三点共线时, .
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形 的对角线 上,时钟中心在矩形 对角线的交点 上.若 ,则 长为 (结果保留根号).
如图,在河对岸有一矩形场地 ,为了估测场地大小,在笔直的河岸 上依次取点 , , ,使 , ,点 , , 在同一直线上.在 点观测 点后,沿 方向走到 点,观测 点发现 .测得 米, 米, 米, ,则场地的边 为 米, 为 米.