如图,已知正方形 ,点 是边 延长线上的动点(不与点 重合),且 , 由 平移得到,若过点 作 , 为垂足,则有以下结论:
①点 位置变化,使得 时, ;
②无论点 运动到何处,都有 ;
③在点 的运动过程中,四边形 可能成为菱形;
④无论点 运动到何处, 一定大于 .
以上结论正确的有 (把所有正确结论的序号都填上).
如图,四边形 为正方形, 是等腰直角三角形, ,点 , 在 轴上,点 在 轴上,点 在双曲线 第一象限内的图象上, , ,则 .
如图,在 中, , , ,以 为圆心,以适当的长为半径作弧,交 于点 ,交 于点 .分别以 , 为圆心,以大于 的长为半径作弧,两弧在 的内部相交于点 ,作射线 ,交 于点 ,点 在 边上, ,连接 ,则 的周长为 .
如图,在每个小正方形的边长为1的网格中, 的顶点 , 均落在格点上,点 在网格线上,且 .
(Ⅰ)线段 的长等于 .
(Ⅱ)以 为直径的半圆与边 相交于点 ,若 , 分别为边 , 上的动点,当 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 , ,并简要说明点 , 的位置是如何找到的(不要求证明) .
如图, 中,点 为边 的中点,连接 ,将 沿直线 翻折至 所在平面内,得 ,连接 ,分别与边 交于点 ,与 交于点 .若 , ,则 的长为 .
如图, 与 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到△ ,使点 落在 上,边 交线段 于点 .若 ,则
度.
图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形 的对角线 上,时钟中心在矩形 对角线的交点 上.若 ,则 长为 (结果保留根号).
如图,在河对岸有一矩形场地 ,为了估测场地大小,在笔直的河岸 上依次取点 , , ,使 , ,点 , , 在同一直线上.在 点观测 点后,沿 方向走到 点,观测 点发现 .测得 米, 米, 米, ,则场地的边 为 米, 为 米.